Home
Search results “Real life data mining examples”
DATA MINING | The Checkout | ABC1
 
05:43
Kirsten Drysdale finds out how retailers knew a teenager was pregnant before her parents did, in a story about the way our data is collected and used. How viewers can get involved in THE CHECKOUT: http://facebook.com/checkouttv http://twitter.com/checkouttv #thecheckout http://futube.net.au (where you can send in video complaints) [email protected] (email us directly)
Views: 109508 The Checkout
An Example Application of Data Mining
 
01:24
Have a look at one of our decision support systems powered by our data mining algorithms.
The ART of Data Mining – Practical learnings from real-world data mining applications
 
01:18:27
Machine Learning and data mining is part SCIENCE (ML algorithms, optimization), part ENGINEERING (large-scale modelling, real-time decisions), part PROCESS (data understanding, feature engineering, modelling, evaluation, and deployment), and part ART. In this talk, Dr. Shailesh Kumar focuses on the "ART of data mining" - the little things that make the big difference in the quality and sophistication of machine learning models we build. Using real-world analytics problems from a variety of domains, Shailesh shares a number of practical learnings in: (1) The art of understanding the data better - (e.g. visualization of text data in a semantic space) (2) The art of feature engineering - (e.g. converting raw inputs into meaningful and discriminative features) (3) The art of dealing with nuances in class labels - (e.g. creating, sampling, and cleaning up class labels) (4) The art of combining labeled and unlabelled data - (e.g. semi-supervised and active learning) (5) The art of decomposing a complex modelling problem into simpler ones - (e.g. divide and conquer) (6) The art of using textual features with structured features to build models, etc. The key objective of the talk is to share some of the learnings that might come in handy while "designing" and "debugging" machine learning solutions and to give a fresh perspective on why data mining is still mostly an ART.
Views: 1754 HasGeek TV
▶ Application of Data Mining - Real Life Use of Data Mining - Where We Can Use Data Mining ?
 
03:08
Data Mining becomes a very hot topic in this moments because of its various uses. We can apply data mining to predict about an event that might happen. ✔Application of Data Mining - Real Life Use of Data Mining - Where We Can Use Data Mining? We're gonna learn some real-life scenario of Data Mining in this video. »See Full #Data_Mining Video Series Here: https://www.youtube.com/watch?v=t8lSMGW5eT0&list=PL9qn9k4eqGKRRn1uBmEhlmEd58ATOziA1 In This Video You are gonna learn Data Mining #Bangla_Tutorial Data mining is an important process to discover knowledge about your customer behavior towards your business offerings. » My #Linkedin_Profile: https://www.linkedin.com/in/rafayet13 » Read My Full Article on #Data_Mining Career Opportunity & So On » Link: https://medium.com/@rafayet13 #Learn_Data_Mining_In_A_Easy_Way #Data_Mining_Essential_Course #Data_Mining_Course_For_Beginner ট্র্যাডিশনাল পদ্ধতিতে যে সকল সমস্যার সহজে কোন সমাধান দেয়া যায় না #ডেটা_মাইনিং ব্যবহারে সহজেই একটি সিদ্ধান্তে পৌঁছানো সম্ভব। আর সে সিদ্ধান্ত কাজে লাগিয়ে ব্যবসায়িক অথবা যে কোন সম্পর্কিত সিদ্ধান্ত গ্রহন সম্ভব। Data Mining,big data,data analysis,data mining tutorial,book bd,Bangla tutorials,data mining software,Data Mining,What is data mining,bookbd,data analysis,data mining tutorial,data science,big data, business intelligence,data mining tools,bangla tutorial,data mining bangla tutorial,how to,how to mine data, knowledge discovery, Artificial Intelligence,Deep learning,machine learning,Python tutorials, Data Mining in the Retail Industry What does the future of business look like? How data will transform business? How data mining will transform business?
Views: 7066 BookBd
Big Data Use cases for Beginners  | Real Life Case Studies | Success Stories
 
14:45
In this video we will discuss: - Big Data Use case - Real life case studies of Big Data - Credit card fraud detection using Big Data - Sentiment Analysis using Big Data - Retail Use Case of Big Data - Sears Holdings Use case of Big Data - Market Basket Analysis using Big Data For more details visit: http://data-flair.training/big-data-hadoop/ [email protected] / +91-7718877477
Data Mining in the Retail Industry
 
07:04
This is a powerpoint/video compilation I made for a project in my Systems Engineering class. It is a tutorial of Data Mining in the Retail Industry and includes a trip I took to Harris Teeter to prove the importance of Market Basket Analysis in the real world.
Views: 7495 bgood717
Data Science in Real Life
 
01:15
Views: 14765 Brian Caffo
How Big Data Is Used In Amazon Recommendation Systems | Big Data Application & Example | Simplilearn
 
02:40
This Big Data Video will help you understand how Amazon is using Big Data is ued in their recommendation syatems. You will understand the importance of Big Data using case study. Recommendation systems have impacted or even redefined our lives in many ways. One example of this impact is how our online shopping experience is being redefined. As we browse through products, the Recommendation system offer recommendations of products we might be interested in. Regardless of the perspectives, business or consumer, Recommendation systems have been immensely beneficial. And big data is the driving force behind Recommendation systems. Subscribe to Simplilearn channel for more Big Data and Hadoop Tutorials - https://www.youtube.com/user/Simplilearn?sub_confirmation=1 Check our Big Data Training Video Playlist: https://www.youtube.com/playlist?list=PLEiEAq2VkUUJqp1k-g5W1mo37urJQOdCZ Big Data and Analytics Articles - https://www.simplilearn.com/resources/big-data-and-analytics?utm_campaign=Amazon-BigData-S4RL6prqtGQ&utm_medium=Tutorials&utm_source=youtube To gain in-depth knowledge of Big Data and Hadoop, check our Big Data Hadoop and Spark Developer Certification Training Course: http://www.simplilearn.com/big-data-and-analytics/big-data-and-hadoop-training?utm_campaign=Amazon-BigData-S4RL6prqtGQ&utm_medium=Tutorials&utm_source=youtube #bigdata #bigdatatutorialforbeginners #bigdataanalytics #bigdatahadooptutorialforbeginners #bigdatacertification #HadoopTutorial - - - - - - - - - About Simplilearn's Big Data and Hadoop Certification Training Course: The Big Data Hadoop and Spark developer course have been designed to impart an in-depth knowledge of Big Data processing using Hadoop and Spark. The course is packed with real-life projects and case studies to be executed in the CloudLab. Mastering real-time data processing using Spark: You will learn to do functional programming in Spark, implement Spark applications, understand parallel processing in Spark, and use Spark RDD optimization techniques. You will also learn the various interactive algorithm in Spark and use Spark SQL for creating, transforming, and querying data form. As a part of the course, you will be required to execute real-life industry-based projects using CloudLab. The projects included are in the domains of Banking, Telecommunication, Social media, Insurance, and E-commerce. This Big Data course also prepares you for the Cloudera CCA175 certification. - - - - - - - - What are the course objectives of this Big Data and Hadoop Certification Training Course? This course will enable you to: 1. Understand the different components of Hadoop ecosystem such as Hadoop 2.7, Yarn, MapReduce, Pig, Hive, Impala, HBase, Sqoop, Flume, and Apache Spark 2. Understand Hadoop Distributed File System (HDFS) and YARN as well as their architecture, and learn how to work with them for storage and resource management 3. Understand MapReduce and its characteristics, and assimilate some advanced MapReduce concepts 4. Get an overview of Sqoop and Flume and describe how to ingest data using them 5. Create database and tables in Hive and Impala, understand HBase, and use Hive and Impala for partitioning 6. Understand different types of file formats, Avro Schema, using Arvo with Hive, and Sqoop and Schema evolution 7. Understand Flume, Flume architecture, sources, flume sinks, channels, and flume configurations 8. Understand HBase, its architecture, data storage, and working with HBase. You will also understand the difference between HBase and RDBMS 9. Gain a working knowledge of Pig and its components 10. Do functional programming in Spark 11. Understand resilient distribution datasets (RDD) in detail 12. Implement and build Spark applications 13. Gain an in-depth understanding of parallel processing in Spark and Spark RDD optimization techniques 14. Understand the common use-cases of Spark and the various interactive algorithms 15. Learn Spark SQL, creating, transforming, and querying Data frames - - - - - - - - - - - Who should take up this Big Data and Hadoop Certification Training Course? Big Data career opportunities are on the rise, and Hadoop is quickly becoming a must-know technology for the following professionals: 1. Software Developers and Architects 2. Analytics Professionals 3. Senior IT professionals 4. Testing and Mainframe professionals 5. Data Management Professionals 6. Business Intelligence Professionals 7. Project Managers 8. Aspiring Data Scientists - - - - - - - - For more updates on courses and tips follow us on: - Facebook : https://www.facebook.com/Simplilearn - Twitter: https://twitter.com/simplilearn - LinkedIn: https://www.linkedin.com/company/simplilearn - Website: https://www.simplilearn.com Get the android app: http://bit.ly/1WlVo4u Get the iOS app: http://apple.co/1HIO5J0
Views: 26224 Simplilearn
Big Data Analytics: 11 Case Histories and Success Stories
 
09:26
http://www.patrickschwerdtfeger.com/sbi/ This video reviews 11 case histories where companies have used Big Data analytics to find profitable insights for their businesses. Companies are using analytics to find attribution and develop algorithms that they can monetize. They're looking for correlation and causation. Big Data analytics promises to make our world a more intuitive place and businesses need to develop their data analytics capabilities to capitalize on the trend.
Views: 130943 Patrick Schwerdtfeger
Data Mining Applications
 
03:53
Two interesting applications of data mining
Views: 9110 D Huang
Linear Regression - Machine Learning Fun and Easy
 
07:47
Linear Regression - Machine Learning Fun and Easy https://www.udemy.com/machine-learning-fun-and-easy-using-python-and-keras/?couponCode=YOUTUBE_ML Hi and welcome to a new lecture in the Fun and Easy Machine Learning Series. Today I’ll be talking about Linear Regression. We show you also how implement a linear regression in excel Linear regression attempts to model the relationship between two variables by fitting a linear equation to observed data. One variable is considered to be an explanatory variable, and the other is considered to be a dependent variable. Dependent Variable – Variable who’s values we want to explain or forecast Independent or explanatory Variable that Explains the other variable. Values are independent. Dependent variable can be denoted as y, so imagine a child always asking y is he dependent on his parents. And then you can imagine the X as your ex boyfriend/girlfriend who is independent because they don’t need or depend on you. A good way to remember it. Anyways Used for 2 Applications To Establish if there is a relation between 2 variables or see if there is statistically signification relationship between the two variables- • To see how increase in sin tax has an effect on how many cigarettes packs are consumed • Sleep hours vs test scores • Experience vs Salary • Pokemon vs Urban Density • House floor area vs House price Forecast new observations – Can use what we know to forecast unobserved values Here are some other examples of ways that linear regression can be applied. • So say the sales of ROI of Fidget spinners over time. • Stock price over time • Predict price of Bitcoin over time. Linear Regression is also known as the line of best fit The line of best fit can be represented by the linear equation y = a + bx or y = mx + b or y = b0+b1x You most likely learnt this in school. So b is is the intercept, if you increase this variable, your intercept moves up or down along the y axis. M is your slope or gradient, if you change this, then your line rotates along the intercept. Data is actually a series of x and y observations as shown on this scatter plot. They do not follow a straight line however they do follow a linear pattern hence the term linear regression Assuming we already have the best fit line, We can calculate the error term Epsilon. Also known as the Residual. And this is the term that we would like to minimize along all the points in the data series. So say if we have our linear equation but also represented in statisitical notation. The residual fit in to our equation as shown y = b0+b1x + e To learn more on Augmented Reality, IoT, Machine Learning FPGAs, Arduinos, PCB Design and Image Processing then Check out http://www.arduinostartups.com/ Please like and Subscribe for more videos :) -------------------------------------------------- Support us on Patreon http://bit.ly/PatreonArduinoStartups --------------------------------------------------
Views: 106281 Augmented Startups
The power of Real World Evidence Analytics
 
03:35
Data is at the heart of a revolution in healthcare innovation: Real World Evidence. Massive volumes of Real World Data (RWD) are generated every day. Because of the complexity of sourcing and analyzing RWD, more time and effort is often spent on data acquisition, cleansing, standardization and encryption than extraction of insights. Real World Evidence Analytics, fueled by the power of data science, can address these challenges. Find out how by watching this brief video. And visit http://www.saama.com/ls for more information.
Views: 3481 SaamaInc
Data Mining using R | Data Mining Tutorial for Beginners | R Tutorial for Beginners | Edureka
 
36:36
( R Training : https://www.edureka.co/r-for-analytics ) This Edureka R tutorial on "Data Mining using R" will help you understand the core concepts of Data Mining comprehensively. This tutorial will also comprise of a case study using R, where you'll apply data mining operations on a real life data-set and extract information from it. Following are the topics which will be covered in the session: 1. Why Data Mining? 2. What is Data Mining 3. Knowledge Discovery in Database 4. Data Mining Tasks 5. Programming Languages for Data Mining 6. Case study using R Subscribe to our channel to get video updates. Hit the subscribe button above. Check our complete Data Science playlist here: https://goo.gl/60NJJS #LogisticRegression #Datasciencetutorial #Datasciencecourse #datascience How it Works? 1. There will be 30 hours of instructor-led interactive online classes, 40 hours of assignments and 20 hours of project 2. We have a 24x7 One-on-One LIVE Technical Support to help you with any problems you might face or any clarifications you may require during the course. 3. You will get Lifetime Access to the recordings in the LMS. 4. At the end of the training you will have to complete the project based on which we will provide you a Verifiable Certificate! - - - - - - - - - - - - - - About the Course Edureka's Data Science course will cover the whole data life cycle ranging from Data Acquisition and Data Storage using R-Hadoop concepts, Applying modelling through R programming using Machine learning algorithms and illustrate impeccable Data Visualization by leveraging on 'R' capabilities. - - - - - - - - - - - - - - Why Learn Data Science? Data Science training certifies you with ‘in demand’ Big Data Technologies to help you grab the top paying Data Science job title with Big Data skills and expertise in R programming, Machine Learning and Hadoop framework. After the completion of the Data Science course, you should be able to: 1. Gain insight into the 'Roles' played by a Data Scientist 2. Analyse Big Data using R, Hadoop and Machine Learning 3. Understand the Data Analysis Life Cycle 4. Work with different data formats like XML, CSV and SAS, SPSS, etc. 5. Learn tools and techniques for data transformation 6. Understand Data Mining techniques and their implementation 7. Analyse data using machine learning algorithms in R 8. Work with Hadoop Mappers and Reducers to analyze data 9. Implement various Machine Learning Algorithms in Apache Mahout 10. Gain insight into data visualization and optimization techniques 11. Explore the parallel processing feature in R - - - - - - - - - - - - - - Who should go for this course? The course is designed for all those who want to learn machine learning techniques with implementation in R language, and wish to apply these techniques on Big Data. The following professionals can go for this course: 1. Developers aspiring to be a 'Data Scientist' 2. Analytics Managers who are leading a team of analysts 3. SAS/SPSS Professionals looking to gain understanding in Big Data Analytics 4. Business Analysts who want to understand Machine Learning (ML) Techniques 5. Information Architects who want to gain expertise in Predictive Analytics 6. 'R' professionals who want to captivate and analyze Big Data 7. Hadoop Professionals who want to learn R and ML techniques 8. Analysts wanting to understand Data Science methodologies Please write back to us at [email protected] or call us at +918880862004 or 18002759730 for more information. Website: https://www.edureka.co/data-science Facebook: https://www.facebook.com/edurekaIN/ Twitter: https://twitter.com/edurekain LinkedIn: https://www.linkedin.com/company/edureka Customer Reviews: Gnana Sekhar Vangara, Technology Lead at WellsFargo.com, says, "Edureka Data science course provided me a very good mixture of theoretical and practical training. The training course helped me in all areas that I was previously unclear about, especially concepts like Machine learning and Mahout. The training was very informative and practical. LMS pre recorded sessions and assignmemts were very good as there is a lot of information in them that will help me in my job. The trainer was able to explain difficult to understand subjects in simple terms. Edureka is my teaching GURU now...Thanks EDUREKA and all the best. " Facebook: https://www.facebook.com/edurekaIN/ Twitter: https://twitter.com/edurekain LinkedIn: https://www.linkedin.com/company/edureka
Views: 53751 edureka!
Data Mining: How You're Revealing More Than You Think
 
11:13
Data mining recently made big news with the Cambridge Analytica scandal, but it is not just for ads and politics. It can help doctors spot fatal infections and it can even predict massacres in the Congo. Hosted by: Stefan Chin Head to https://scishowfinds.com/ for hand selected artifacts of the universe! ---------- Support SciShow by becoming a patron on Patreon: https://www.patreon.com/scishow ---------- Dooblydoo thanks go to the following Patreon supporters: Lazarus G, Sam Lutfi, Nicholas Smith, D.A. Noe, سلطان الخليفي, Piya Shedden, KatieMarie Magnone, Scott Satovsky Jr, Charles Southerland, Patrick D. Ashmore, Tim Curwick, charles george, Kevin Bealer, Chris Peters ---------- Looking for SciShow elsewhere on the internet? Facebook: http://www.facebook.com/scishow Twitter: http://www.twitter.com/scishow Tumblr: http://scishow.tumblr.com Instagram: http://instagram.com/thescishow ---------- Sources: https://www.aaai.org/ojs/index.php/aimagazine/article/viewArticle/1230 https://www.theregister.co.uk/2006/08/15/beer_diapers/ https://www.theatlantic.com/technology/archive/2012/04/everything-you-wanted-to-know-about-data-mining-but-were-afraid-to-ask/255388/ https://www.economist.com/node/15557465 https://blogs.scientificamerican.com/guest-blog/9-bizarre-and-surprising-insights-from-data-science/ https://qz.com/584287/data-scientists-keep-forgetting-the-one-rule-every-researcher-should-know-by-heart/ https://www.amazon.com/Predictive-Analytics-Power-Predict-Click/dp/1118356853 http://dml.cs.byu.edu/~cgc/docs/mldm_tools/Reading/DMSuccessStories.html http://content.time.com/time/magazine/article/0,9171,2058205,00.html https://www.nytimes.com/2012/02/19/magazine/shopping-habits.html?pagewanted=all&_r=0 https://www2.deloitte.com/content/dam/Deloitte/de/Documents/deloitte-analytics/Deloitte_Predictive-Maintenance_PositionPaper.pdf https://www.cs.helsinki.fi/u/htoivone/pubs/advances.pdf http://cecs.louisville.edu/datamining/PDF/0471228524.pdf https://bits.blogs.nytimes.com/2012/03/28/bizarre-insights-from-big-data https://scholar.harvard.edu/files/todd_rogers/files/political_campaigns_and_big_data_0.pdf https://insights.spotify.com/us/2015/09/30/50-strangest-genre-names/ https://www.theguardian.com/news/2005/jan/12/food.foodanddrink1 https://adexchanger.com/data-exchanges/real-world-data-science-how-ebay-and-placed-put-theory-into-practice/ https://www.theverge.com/2015/9/30/9416579/spotify-discover-weekly-online-music-curation-interview http://blog.galvanize.com/spotify-discover-weekly-data-science/ Audio Source: https://freesound.org/people/makosan/sounds/135191/ Image Source: https://commons.wikimedia.org/wiki/File:Swiss_average.png
Views: 139488 SciShow
Decision Tree with Solved Example in English | DWM | ML | BDA
 
21:21
Take the Full Course of Datawarehouse What we Provide 1)22 Videos (Index is given down) + Update will be Coming Before final exams 2)Hand made Notes with problems for your to practice 3)Strategy to Score Good Marks in DWM To buy the course click here: https://goo.gl/to1yMH or Fill the form we will contact you https://goo.gl/forms/2SO5NAhqFnjOiWvi2 if you have any query email us at [email protected] or [email protected] Index Introduction to Datawarehouse Meta data in 5 mins Datamart in datawarehouse Architecture of datawarehouse how to draw star schema slowflake schema and fact constelation what is Olap operation OLAP vs OLTP decision tree with solved example K mean clustering algorithm Introduction to data mining and architecture Naive bayes classifier Apriori Algorithm Agglomerative clustering algorithmn KDD in data mining ETL process FP TREE Algorithm Decision tree
Views: 181421 Last moment tuitions
NEW APPLICATIONS OF DATA MINING
 
06:05
NEW APPLICATIONS OF DATA MINING
Views: 29 judith monicca
Introduction to data mining and architecture  in hindi
 
09:51
Take the Full Course of Datawarehouse What we Provide 1)22 Videos (Index is given down) + Update will be Coming Before final exams 2)Hand made Notes with problems for your to practice 3)Strategy to Score Good Marks in DWM To buy the course click here: https://goo.gl/to1yMH or Fill the form we will contact you https://goo.gl/forms/2SO5NAhqFnjOiWvi2 if you have any query email us at [email protected] or [email protected] Index Introduction to Datawarehouse Meta data in 5 mins Datamart in datawarehouse Architecture of datawarehouse how to draw star schema slowflake schema and fact constelation what is Olap operation OLAP vs OLTP decision tree with solved example K mean clustering algorithm Introduction to data mining and architecture Naive bayes classifier Apriori Algorithm Agglomerative clustering algorithmn KDD in data mining ETL process FP TREE Algorithm Decision tree
Views: 178231 Last moment tuitions
Real-World Big Data and Analytics Case Studies
 
06:17
Emily Plachy, IBM Distinguished Engineer, Author of Analytics Across the Enterprise: How IBM Realizes Value from Big Data and Analytics
How KNN algrorithm works with example : K - Nearest Neighbor
 
08:33
How KNN algorithm works with example: K - Nearest Neighbor, Classifiers, Data Mining, Knowledge Discovery, Data Analytics
Views: 115240 shreyans jain
Gigs: A day in the life of a data scientist
 
04:01
In this edition of "Gigs," RCRtv takes a look at a day in the life of a data scientist at the AT&T Foundry in Plano, Texas.
Views: 336686 RCR Wireless News
Data structure real life examples
 
02:15
Data structure examples : stack,queue,tree,link-list.
Views: 2433 Akash Koyani
Demo: IBM Big Data and Analytics at work in Banking
 
04:18
Visit http://ibmbigdatahub.com for more industry demos. Banks face many challenges as they strive to return to pre-2008 profit margins including reduced interest rates, unstable financial markets, tighter regulations and lower performing assets. Fortunately, banks taking advantage of big data and analytics can generate new revenue streams. Watch this real-life example of how big data and analytics can improve the overall customer experience. To learn more about IBM Big Data, visit http://www.ibm.com/big-data/us/en/ To learn more about IBM Analytics, visit http://www.ibm.com/analytics/us/en/
Views: 93259 IBM Analytics
BADM 1.1: Data Mining Applications
 
11:59
This video was created by Professor Galit Shmueli and has been used as part of blended and online courses on Business Analytics using Data Mining. It is part of a series of 37 videos, all of which are available on YouTube. For more information: www.dataminingbook.com twitter.com/gshmueli facebook.com/dataminingbook Here is the complete list of the videos: • Welcome to Business Analytics Using Data Mining (BADM) • BADM 1.1: Data Mining Applications • BADM 1.2: Data Mining in a Nutshell • BADM 1.3: The Holdout Set • BADM 2.1: Data Visualization • BADM 2.2: Data Preparation • BADM 3.1: PCA Part 1 • BADM 3.2: PCA Part 2 • BADM 3.3: Dimension Reduction Approaches • BADM 4.1: Linear Regression for Descriptive Modeling Part 1 • BADM 4.2 Linear Regression for Descriptive Modeling Part 2 • BADM 4.3 Linear Regression for Prediction Part 1 • BADM 4.4 Linear Regression for Prediction Part 2 • BADM 5.1 Clustering Examples • BADM 5.2 Hierarchical Clustering Part 1 • BADM 5.3 Hierarchical Clustering Part 2 • BADM 5.4 K-Means Clustering • BADM 6.1 Classification Goals • BADM 6.2 Classification Performance Part 1: The Naive Rule • BADM 6.3 Classification Performance Part 2 • BADM 6.4 Classification Performance Part 3 • BADM 7.1 K-Nearest Neighbors • BADM 7.2 Naive Bayes • BADM 8.1 Classification and Regression Trees Part 1 • BADM 8.2 Classification and Regression Trees Part 2 • BADM 8.3 Classification and Regression Trees Part 3 • BADM 9.1 Logistic Regression for Profiling • BADM 9.2 Logistic Regression for Classification • BADM 10 Multi-Class Classification • BADM 11 Ensembles • BADM 12.1 Association Rules Part 1 • BADM 12.2 Association Rules Part 2 • Neural Networks: Part I • Neural Nets: Part II • Discriminant Analysis (Part 1) • Discriminant Analysis: Statistical Distance (Part 2) • Discriminant Analysis: Misclassification costs and over-sampling (Part 3)
Views: 2458 Galit Shmueli
Fuqua DECISION 618 — Data Mining
 
03:06
The course DECISION 618 Data Mining (a.k.a Big Data Analytics) derives business decisions based on (big) data analytics. The course aims to address one of the most transformational developments in modern business era -- exponential growth and availability of data. We will explore core ideas behind data mining, practical opportunities associated with big data, and the interplay between data science and business decisions. We will discuss real life examples from variety of concepts such as customer retention, health risk prediction, social media analysis, systemic risk, real-time online advertisement, text mining, and data mining contests. We will investigate how data can impact business decisions by focusing on (i) general principles that are long lasting despite of the rapid changing technology (ii) specific algorithms/technologies that are relevant today and are being used in many industries; and (iii) "hands-on" analyses of actual datasets to develop practical methodologies. The video has taken from Big Data Analytics: The Revolution Has Just Begun video.
Views: 222 Alexei Robsky
Leakage in Data Mining Competitions and Real Life Projects
 
23:40
Data Mining, from Theory to Practice, Lecture of Prof. Saharon Rosset, School of Mathematical Sciences, Tel-Aviv University, "Leakage in Data Mining Competitions and Real Life Projects" Data Mining for Business Intelligence - Bridging the Gap Ben-Gurion University of the Negev
Views: 393 BenGurionUniversity
Data Science A-Z™: Real-Life Data Science Exercises Included
 
02:26
Learn Data Science step by step through real Analytics examples. Data Mining, Modeling, Tableau Visualization and more! Check out the course here: http://bit.ly/2vWxHdh
Views: 80 Online Courses
Datamining for design and manufacturing
 
08:50
1.Data processing 2.Verification 3.Regression 4.Classification 5.Clusturing 6.Assoiation 7.Sequential pattern 8.Model visualisation 9.Deviation analysis 10.Datamining in product design and development 11.examples 12.datamining in manufacturing 13.enabling technology for datamining
Views: 95 kiruthika mani
Applications of Predictive Analytics in Legal | Litigation Analytics, Data Mining & AI | Great Lakes
 
30:12
#PredictiveAnalytics | Learn the prediction of outcome or treatment of a case by legal courts of Appeals based on historical data using predictive analytics. Watch the video to understand analytics in legal using case study on real-life data set. How litigation analytics can flourish with the use of data mining and AI. Know more about our analytics Program: PGP- Business Analytics: https://goo.gl/V9RzVD PGP- Big Data Analytics: https://goo.gl/rRyjj4 Business Analytics Certification Program: https://goo.gl/7HPoUY #LegalTech #LegalAnalytics #GreatLearning #GreatLakes About Great Learning: - Great Learning is an online and hybrid learning company that offers high-quality, impactful, and industry-relevant programs to working professionals like you. These programs help you master data-driven decision-making regardless of the sector or function you work in and accelerate your career in high growth areas like Data Science, Big Data Analytics, Machine Learning, Artificial Intelligence & more. - Watch the video to know ''Why is there so much hype around 'Artificial Intelligence'?'' https://www.youtube.com/watch?v=VcxpBYAAnGM - What is Machine Learning & its Applications? https://www.youtube.com/watch?v=NsoHx0AJs-U - Do you know what the three pillars of Data Science? Here explaining all about the pillars of Data Science: https://www.youtube.com/watch?v=xtI2Qa4v670 - Want to know more about the careers in Data Science & Engineering? Watch this video: https://www.youtube.com/watch?v=0Ue_plL55jU - For more interesting tutorials, don't forget to Subscribe our channel: https://www.youtube.com/user/beaconelearning?sub_confirmation=1 - Learn More at: https://www.greatlearning.in/ For more updates on courses and tips follow us on: - Google Plus: https://plus.google.com/u/0/108438615307549697541 - Facebook: https://www.facebook.com/GreatLearningOfficial/ - LinkedIn: https://www.linkedin.com/company/great-learning/ - Follow our Blog: https://www.greatlearning.in/blog/?utm_source=Youtube
Views: 728 Great Learning
Star and Snowflake schema explained with real scenarios
 
22:57
Star and Snowflake schema are basic and vital concept of dataware housing. This video explains what are star and snowflake schema. Their differences and which should be used when in a very simplified manner with real examples. Please like this video and subscribe to my channel for more such content
Views: 30930 Tech Coach
Machine Learning - Supervised VS Unsupervised Learning
 
05:04
Enroll in the course for free at: https://bigdatauniversity.com/courses/machine-learning-with-python/ Machine Learning can be an incredibly beneficial tool to uncover hidden insights and predict future trends. This free Machine Learning with Python course will give you all the tools you need to get started with supervised and unsupervised learning. This Machine Learning with Python course dives into the basics of machine learning using an approachable, and well-known, programming language. You'll learn about Supervised vs Unsupervised Learning, look into how Statistical Modeling relates to Machine Learning, and do a comparison of each. Look at real-life examples of Machine learning and how it affects society in ways you may not have guessed! Explore many algorithms and models: Popular algorithms: Classification, Regression, Clustering, and Dimensional Reduction. Popular models: Train/Test Split, Root Mean Squared Error, and Random Forests. Get ready to do more learning than your machine! Connect with Big Data University: https://www.facebook.com/bigdatauniversity https://twitter.com/bigdatau https://www.linkedin.com/groups/4060416/profile ABOUT THIS COURSE •This course is free. •It is self-paced. •It can be taken at any time. •It can be audited as many times as you wish. https://bigdatauniversity.com/courses/machine-learning-with-python/
Views: 66610 Cognitive Class
Intro to Data Analysis / Visualization with Python, Matplotlib and Pandas | Matplotlib Tutorial
 
22:01
Python data analysis / data science tutorial. Let’s go! For more videos like this, I’d recommend my course here: https://www.csdojo.io/moredata Sample data and sample code: https://www.csdojo.io/data My explanation about Jupyter Notebook and Anaconda: https://bit.ly/2JAtjF8 Also, keep in touch on Twitter: https://twitter.com/ykdojo And Facebook: https://www.facebook.com/entercsdojo Outline - check the comment section for a clickable version: 0:37: Why data visualization? 1:05: Why Python? 1:39: Why Matplotlib? 2:23: Installing Jupyter through Anaconda 3:20: Launching Jupyter 3:41: DEMO begins: create a folder and download data 4:27: Create a new Jupyter Notebook file 5:09: Importing libraries 6:04: Simple examples of how to use Matplotlib / Pyplot 7:21: Plotting multiple lines 8:46: Importing data from a CSV file 10:46: Plotting data you’ve imported 13:19: Using a third argument in the plot() function 13:42: A real analysis with a real data set - loading data 14:49: Isolating the data for the U.S. and China 16:29: Plotting US and China’s population growth 18:22: Comparing relative growths instead of the absolute amount 21:21: About how to get more videos like this - it’s at https://www.csdojo.io/moredata
Views: 149878 CS Dojo
Decision Tree (CART) - Machine Learning Fun and Easy
 
08:46
Decision Tree (CART) - Machine Learning Fun and Easy https://www.udemy.com/machine-learning-fun-and-easy-using-python-and-keras/?couponCode=YOUTUBE_ML Decision tree is a type of supervised learning algorithm (having a pre-defined target variable) that is mostly used in classification problems. A tree has many analogies in real life, and turns out that it has influenced a wide area of machine learning, covering both classification and regression (CART). So a decision tree is a flow-chart-like structure, where each internal node denotes a test on an attribute, each branch represents the outcome of a test, and each leaf (or terminal) node holds a class label. The topmost node in a tree is the root node. To learn more on Augmented Reality, IoT, Machine Learning FPGAs, Arduinos, PCB Design and Image Processing then Check out http://www.arduinostartups.com/ Please like and Subscribe for more videos :) -------------------------------------------------- Support us on Patreon http://bit.ly/PatreonArduinoStartups --------------------------------------------------
Views: 103392 Augmented Startups
Beginner - Data Science Project
 
09:37
The best way to learn data science and showcase your skills is by doing some actual projects – we learn best by doing. So, how do we choose a project to work on? Where do we start? One way to approach it is to first look at some career websites and find a few jobs in data science that you aspire to have in the future. Write down the skills, qualifications, day-to-day expectations, and overall job description from the jobs that interest you. This will give you the project “requirements” that you can work with to formulate a project. http://storybydata.com/data-science-learn-by-doing-global-super-store-project/
Views: 25270 Story by Data
Applications of Linear Algebra Part 1 | DavidsonX on edX | Course About Video
 
01:37
Applications of Linear Algebra Part 1 Learn to use linear algebra in computer graphics by making images disappear in an animation or creating a mosaic or fractal and in data mining to measure similarities between movies, songs, or friends. About this Course From simulating complex phenomenon on supercomputers to storing the coordinates needed in modern 3D printing, data is a huge and growing part of our world. A major tool to manipulate and study this data is linear algebra. This course is part 1 of a 2-part course. In this part, we’ll learn basics of matrix algebra with an emphasis on application. This class has a focus on computer graphics while also containing examples in data mining. We’ll learn to make an image transparent, fade from one image to another, and rotate a 3D wireframe model. We’ll also mine data; for example, we will find similar movies that one might enjoy seeing. In the topic of sports ranking, we’ll be ready to participate in March Madness and submit our own mathematically generated brackets to compete against millions of others. The lectures are developed to encourage you to explore and create your own ideas either through your own programming but also with online tools developed for the course. Come to this course ready to investigate your own ideas. Enroll in Applications of Linear Algebra Part 1 from DavidsonX at https://www.edx.org/course/applications-linear-davidsonx-d003x-1
Views: 14191 edX
Introduction to Data Science with R - Data Analysis Part 1
 
01:21:50
Part 1 in a in-depth hands-on tutorial introducing the viewer to Data Science with R programming. The video provides end-to-end data science training, including data exploration, data wrangling, data analysis, data visualization, feature engineering, and machine learning. All source code from videos are available from GitHub. NOTE - The data for the competition has changed since this video series was started. You can find the applicable .CSVs in the GitHub repo. Blog: http://daveondata.com GitHub: https://github.com/EasyD/IntroToDataScience I do Data Science training as a Bootcamp: https://goo.gl/OhIHSc
Views: 879031 David Langer
Supervised & Unsupervised Learning
 
10:43
In this video you will learn what are the differences between Supervised Learning & Unsupervised learning in the context of Machine Learning. Linear regression, Logistic regression, SVM, random forest are the supervised learning algorithms. For all videos and Study packs visit : http://analyticuniversity.com/ Analytics University on Facebook : https://www.facebook.com/AnalyticsUniversity Logistic Regression in R: https://goo.gl/S7DkRy Logistic Regression in SAS: https://goo.gl/S7DkRy Logistic Regression Theory: https://goo.gl/PbGv1h Time Series Theory : https://goo.gl/54vaDk Time ARIMA Model in R : https://goo.gl/UcPNWx Survival Model : https://goo.gl/nz5kgu Data Science Career : https://goo.gl/Ca9z6r Machine Learning : https://goo.gl/giqqmx
Views: 53803 Analytics University
Machine Learning Algorithms | Machine Learning Tutorial | Data Science Algorithms | Simplilearn
 
01:11:05
This Machine Learning Algorithms Tutorial video will help you learn you what is Machine Learning, various Machine Learning problems and the algorithms, key Machine Learning algorithms with simple examples and use cases implemented in Python. The key Machine Learning algorithms discussed in detail are Linear Regression, Logistic Regression, Decision Tree, Random Forest and KNN algorithm. This Machine Learning Algorithms tutorial is designed for beginners to understand which algorithm to use when, how each algorithm works and implement it on Python with real-life use cases. Below topics are covered in this Machine Learning Algorithms Tutorial: 1. Real world applications of Machine Learning 2. What is Machine Learning? 3. Processes involved in Machine Learning 4. Type of Machine Learning Algorithms 5. Popular Algorithms with hands-on demo - Linear regression - Logistic regression - Decision tree and Random forest - N Nearest neighbor What is Machine Learning: Machine Learning is an application of Artificial Intelligence (AI) that provides systems the ability to automatically learn and improve from experience without being explicitly programmed. Subscribe to our channel for more Machine Learning Tutorials: https://www.youtube.com/user/Simplilearn?sub_confirmation=1 Machine Learning Articles: https://www.simplilearn.com/what-is-artificial-intelligence-and-why-ai-certification-article?utm_campaign=Machine-Learning-Algorithms-I7NrVwm3apg&utm_medium=Tutorials&utm_source=youtube To gain in-depth knowledge of Machine Learning, check our Machine Learning certification training course: https://www.simplilearn.com/big-data-and-analytics/machine-learning-certification-training-course?utm_campaign=Machine-Learning-Algorithms-I7NrVwm3apg&utm_medium=Tutorials&utm_source=youtube #MachineLearningAlgorithms #Datasciencecourse #DataScience #SimplilearnMachineLearning #MachineLearningCourse - - - - - - - - About Simplilearn Machine Learning course: A form of artificial intelligence, Machine Learning is revolutionizing the world of computing as well as all people’s digital interactions. Machine Learning powers such innovative automated technologies as recommendation engines, facial recognition, fraud protection and even self-driving cars.This Machine Learning course prepares engineers, data scientists and other professionals with knowledge and hands-on skills required for certification and job competency in Machine Learning. - - - - - - - Why learn Machine Learning? Machine Learning is taking over the world- and with that, there is a growing need among companies for professionals to know the ins and outs of Machine Learning The Machine Learning market size is expected to grow from USD 1.03 Billion in 2016 to USD 8.81 Billion by 2022, at a Compound Annual Growth Rate (CAGR) of 44.1% during the forecast period. - - - - - - What skills will you learn from this Machine Learning course? By the end of this Machine Learning course, you will be able to: 1. Master the concepts of supervised, unsupervised and reinforcement learning concepts and modeling. 2. Gain practical mastery over principles, algorithms, and applications of Machine Learning through a hands-on approach which includes working on 28 projects and one capstone project. 3. Acquire thorough knowledge of the mathematical and heuristic aspects of Machine Learning. 4. Understand the concepts and operation of support vector machines, kernel SVM, naive Bayes, decision tree classifier, random forest classifier, logistic regression, K-nearest neighbors, K-means clustering and more. 5. Be able to model a wide variety of robust Machine Learning algorithms including deep learning, clustering, and recommendation systems - - - - - - - Who should take this Machine Learning Training Course? We recommend this Machine Learning training course for the following professionals in particular: 1. Developers aspiring to be a data scientist or Machine Learning engineer 2. Information architects who want to gain expertise in Machine Learning algorithms 3. Analytics professionals who want to work in Machine Learning or artificial intelligence 4. Graduates looking to build a career in data science and Machine Learning - - - - - - For more updates on courses and tips follow us on: - Facebook: https://www.facebook.com/Simplilearn - Twitter: https://twitter.com/simplilearn - LinkedIn: https://www.linkedin.com/company/simplilearn - Website: https://www.simplilearn.com Get the Android app: http://bit.ly/1WlVo4u Get the iOS app: http://apple.co/1HIO5J0
Views: 23705 Simplilearn
Artificial Neural Networks Explained !
 
12:25
Contact me on : [email protected] Neural Networks is one of the most interesting topics in the Machine Learning community. Their potential is being recognized every day as the technology is advancing at an ever growing rate. From being a topic of research for decades to practical use by thousands of organizations, Neural Networks have come a long way. Today there are a number of jobs available in Machine Learning from application to research domain. But Machine Learning is not like conventional programming. It requires a different line of thinking than what conventional programming has taught us.  This might become a problem for people interested in learning Machine Learning. A lot of mathematical concepts are deeply embedded in ML and an understanding of these core concepts will help anyone starting with ML go long way ahead. Trust me! thats the only way. In this video I have tried to make those core concepts a little bit clearer by using a real-life example. This video is about how simply you can understand the working of an Artificial Neural Network. There are a lot of questions which can come to your mind after watching this video, but do not focus on the "WHY" as much as on the "HOW" of what has been explained. A detailed explanation of each of the mentioned terms will be covered in the future videos.
Views: 52700 Harsh Gaikwad
Association Rule Mining | Data Science | Edureka
 
43:22
( Data Science Training - https://www.edureka.co/data-science ) Watch the sample class recording: http://www.edureka.co/data-science?utm_source=youtube&utm_medium=referral&utm_campaign=association-rule-mining In data mining, association rule learning is a popular and well researched method for discovering interesting relations between variables in large databases. It is intended to identify strong rules discovered in databases using different measures of interestingness. Topics covered in the video are: 1. What is Association Rule Mining 2. Concepts in Association Rule Mining Related blogs: http://www.edureka.co/blog/application-of-clustering-in-data-science-using-real-life-examples/?utm_source=youtube&utm_medium=referral&utm_campaign=association-rule-mining http://www.edureka.co/blog/who-can-take-up-a-data-science-tutorial/?utm_source=youtube&utm_medium=referral&utm_campaign=association-rule-mining Edureka is a New Age e-learning platform that provides Instructor-Led Live, Online classes for learners who would prefer a hassle free and self paced learning environment, accessible from any part of the world. The topics related to ‘Association Rule Mining’ have been covered in our course ‘Data science’. For more information, please write back to us at [email protected]
Views: 29022 edureka!
Six Sigma: Root Cause Analysis Examples
 
08:25
Examples showing how to apply various tools to perform a Root Cause Analysis. You can get products to help yourself with similar root cause analysis problems at http://bit.ly/2jyMt3C. ----- Links: PMG Results Website: https://www.pmgresults.com/ Have a Question? https://www.pmgresutls.com/contact/ QuikSigma Software Perpetual Licencse: http://bit.ly/2mxagk2 Basic Green Belt Certification: http://bit.ly/2mx5Ycw Advanced Green Belt Certification: http://bit.ly/2nhg8Os Black Belt Certification: http://bit.ly/2mV6Z0z ----- Basic Principles of Root Cause Analysis 00:13 Five whys 00:51 Variation Breakdown/Thought Map 1:52 Pareto Charts 4:02 Process Map, Cause and Effect Matrix, FMEA 4:25 Process Behavior Charts (Control Charts, I-MR Charts) 5:25 Data Mining, Exploratory Data Analysis (EDA) 6:40
Views: 117886 QuikSigma
A Day in the Life of a Data Analyst
 
02:56
Take a look behind the scenes at the Intermountain Healthcare employees that keep us running smoothly! Our Data Analyst's work hard each day using data, research, numbers, and demographics to help people live the healthiest lives possible.
Views: 111759 Intermountain Healthcare
Examples of blockchain changing everyday life
 
07:29
Jerry Cuomo (VP of Blockchain Technology, IBM) discusses blockchain and the top uses cases the technology supports. Connect with Jerry on Twitter: http://bit.ly/2K7FcGM LINKS What is blockchain?: https://ibm.co/2JWQRmE Get a free guide to getting started with blockchain: https://ibm.co/2uTCbjC IBM Blockchain Platform technical overview: https://ibm.co/2MPnOrB IBM Blockchain Platform Starter Plan – now in GA: https://ibm.co/2LrLW2K Develop. Govern. Operate a blockchain network: https://ibm.co/2v9xEsH #IBM #Blockchain #Technology
Views: 19612 IBMBlockchain
TBYI: Data Mining
 
04:10
Think Before You Ink is a video mini-series created by the University of British Columbia's Digital Tattoo project that aims to raise awareness among the general public about issues surrounding digital identity and citizenship. Ever wonder how Amazon knew you'd want to buy that slap chop set? Or how Netflix predicted you'd love House of Cards before you even knew about it? Data Mining is the powerful technology behind this predictive magic. To learn more about data mining and how it impacts your daily life, watch the video above! And don't forget to visit our website at www.digitaltattoo.ubc.ca to learn more. Music offered by Syril: Licensed for public use. CC copyright. https://www.youtube.com/watch?v=BArOuD_UBGE
Data Mining (Introduction for Business Students)
 
04:21
This short revision video introduces the concept of data mining. Data mining is the process of analysing data from different perspectives and summarising it into useful information, including discovery of previously unknown interesting patterns, unusual records or dependencies. There are many potential business benefits from effective data mining, including: Identifying previously unseen relationships between business data sets Better predicting future trends & behaviours Extract commercial (e.g. performance insights) from big data sets Generating actionable strategies built on data insights (e.g. positioning and targeting for market segments) Data mining is a particularly powerful series of techniques to support marketing competitiveness. Examples include: Sales forecasting: analysing when customers bought to predict when they will buy again Database marketing: examining customer purchasing patterns and looking at the demographics and psychographics of customers to build predictive profiles Market segmentation: a classic use of data mining, using data to break down a market into meaningful segments like age, income, occupation or gender E-commerce basket analysis: using mined data to predict future customer behavior by past performance, including purchases and preferences
Views: 2446 tutor2u
Decision Tree Algorithm | Decision Tree in Python | Machine Learning Algorithms | Edureka
 
46:38
** Machine Learning with Python : https://www.edureka.co/machine-learning-certification-training ** This Edureka video on Decision Tree Algorithm in Python will take you through the fundamentals of decision tree machine learning algorithm concepts and its demo in Python. Below are the topics covered in this tutorial: 1. What is Classification? 2. Types of Classification 3. Classification Use Case 4. What is Decision Tree? 5. Decision Tree Terminology 6. Visualizing a Decision Tree 7 Writing a Decision Tree Classifier fro Scratch in Python using CART Algorithm Subscribe to our channel to get video updates. Hit the subscribe button above. Check out our Python Machine Learning Playlist: https://goo.gl/UxjTxm #decisiontree #decisiontreepython #machinelearningalgorithms - - - - - - - - - - - - - - - - - About the Course Edureka’s Machine Learning Course using Python is designed to make you grab the concepts of Machine Learning. The Machine Learning training will provide deep understanding of Machine Learning and its mechanism. As a Data Scientist, you will be learning the importance of Machine Learning and its implementation in python programming language. Furthermore, you will be taught Reinforcement Learning which in turn is an important aspect of Artificial Intelligence. You will be able to automate real life scenarios using Machine Learning Algorithms. Towards the end of the course, we will be discussing various practical use cases of Machine Learning in python programming language to enhance your learning experience. After completing this Machine Learning Certification Training using Python, you should be able to: Gain insight into the 'Roles' played by a Machine Learning Engineer Automate data analysis using python Describe Machine Learning Work with real-time data Learn tools and techniques for predictive modeling Discuss Machine Learning algorithms and their implementation Validate Machine Learning algorithms Explain Time Series and it’s related concepts Gain expertise to handle business in future, living the present - - - - - - - - - - - - - - - - - - - Why learn Machine Learning with Python? Data Science is a set of techniques that enables the computers to learn the desired behavior from data without explicitly being programmed. It employs techniques and theories drawn from many fields within the broad areas of mathematics, statistics, information science, and computer science. This course exposes you to different classes of machine learning algorithms like supervised, unsupervised and reinforcement algorithms. This course imparts you the necessary skills like data pre-processing, dimensional reduction, model evaluation and also exposes you to different machine learning algorithms like regression, clustering, decision trees, random forest, Naive Bayes and Q-Learning. For more information, please write back to us at [email protected] Call us at US: +18336900808 (Toll Free) or India: +918861301699 Facebook: https://www.facebook.com/edurekaIN/ Twitter: https://twitter.com/edurekain LinkedIn: https://www.linkedin.com/company/edureka
Views: 30715 edureka!
Top 10 Hottest Artificial Intelligence Technologies 2017
 
04:05
Natural Language Generation: Producing text from computer data. Currently used in customer service, report generation, and summarizing business intelligence insights. Sample vendors: Attivio, Automated Insights, Cambridge Semantics, Digital Reasoning, Lucidworks, Narrative Science, SAS, Yseop. Speech Recognition: Transcribe and transform human speech into format useful for computer applications. Currently used in interactive voice response systems and mobile applications. Sample vendors: NICE, Nuance Communications, OpenText, Verint Systems. Virtual Agents: “The current darling of the media,” says Forrester (I believe they refer to my evolving relationships with Alexa), from simple chatbots to advanced systems that can network with humans. Currently used in customer service and support and as a smart home manager. Sample vendors: Amazon, Apple, Artificial Solutions, Assist AI, Creative Virtual, Google, IBM, IPsoft, Microsoft, Satisfi. Machine Learning Platforms: Providing algorithms, APIs, development and training toolkits, data, as well as computing power to design, train, and deploy models into applications, processes, and other machines. Currently used in a wide range of enterprise applications, mostly `involving prediction or classification. Sample vendors: Amazon, Fractal Analytics, Google, H2O.ai, Microsoft, SAS, Skytree. AI-optimized Hardware: Graphics processing units (GPU) and appliances specifically designed and architected to efficiently run AI-oriented computational jobs. Currently primarily making a difference in deep learning applications. Sample vendors: Alluviate, Cray, Google, IBM, Intel, Nvidia. Decision Management: Engines that insert rules and logic into AI systems and used for initial setup/training and ongoing maintenance and tuning. A mature technology, it is used in a wide variety of enterprise applications, assisting in or performing automated decision-making. Sample vendors: Advanced Systems Concepts, Informatica, Maana, Pegasystems, UiPath. Deep Learning Platforms: A special type of machine learning consisting of artificial neural networks with multiple abstraction layers. Currently primarily used in pattern recognition and classification applications supported by very large data sets. Sample vendors: Deep Instinct, Ersatz Labs, Fluid AI, MathWorks, Peltarion, Saffron Technology, Sentient Technologies. Biometrics: Enable more natural interactions between humans and machines, including but not limited to image and touch recognition, speech, and body language. Currently used primarily in market research. Sample vendors: 3VR, Affectiva, Agnitio, FaceFirst, Sensory, Synqera, Tahzoo. Robotic Process Automation: Using scripts and other methods to automate human action to support efficient business processes. Currently used where it’s too expensive or inefficient for humans to execute a task or a process. Sample vendors: Advanced Systems Concepts, Automation Anywhere, Blue Prism, UiPath, WorkFusion. Text Analytics and NLP: Natural language processing (NLP) uses and supports text analytics by facilitating the understanding of sentence structure and meaning, sentiment, and intent through statistical and machine learning methods. Currently used in fraud detection and security, a wide range of automated assistants, and applications for mining unstructured data. Sample vendors: Basis Technology, Coveo, Expert System, Indico, Knime, Lexalytics, Linguamatics, Mindbreeze, Sinequa, Stratifyd, Synapsify.
Views: 38255 TicTacToe Media

dating your older brother's friend
dating ball ideal jars
dating fails pictures
dating break up etiquette
best free iphone dating apps 2012