Home
Search results “Dataset for data mining research papers”
The Best Way to Prepare a Dataset Easily
 
07:42
In this video, I go over the 3 steps you need to prepare a dataset to be fed into a machine learning model. (selecting the data, processing it, and transforming it). The example I use is preparing a dataset of brain scans to classify whether or not someone is meditating. The challenge for this video is here: https://github.com/llSourcell/prepare_dataset_challenge Carl's winning code: https://github.com/av80r/coaster_racer_coding_challenge Rohan's runner-up code: https://github.com/rhnvrm/universe-coaster-racer-challenge Come join other Wizards in our Slack channel: http://wizards.herokuapp.com/ Dataset sources I talked about: https://github.com/caesar0301/awesome-public-datasets https://www.kaggle.com/datasets http://reddit.com/r/datasets More learning resources: https://docs.microsoft.com/en-us/azure/machine-learning/machine-learning-data-science-prepare-data http://machinelearningmastery.com/how-to-prepare-data-for-machine-learning/ https://www.youtube.com/watch?v=kSslGdST2Ms http://freecontent.manning.com/real-world-machine-learning-pre-processing-data-for-modeling/ http://docs.aws.amazon.com/machine-learning/latest/dg/step-1-download-edit-and-upload-data.html http://paginas.fe.up.pt/~ec/files_1112/week_03_Data_Preparation.pdf Please subscribe! And like. And comment. That's what keeps me going. And please support me on Patreon: https://www.patreon.com/user?u=3191693 Follow me: Twitter: https://twitter.com/sirajraval Facebook: https://www.facebook.com/sirajology Instagram: https://www.instagram.com/sirajraval/ Instagram: https://www.instagram.com/sirajraval/ Signup for my newsletter for exciting updates in the field of AI: https://goo.gl/FZzJ5w Hit the Join button above to sign up to become a member of my channel for access to exclusive content!
Views: 174516 Siraj Raval
Data Mining Projects 2016-2017 | ieee data mining papers 2016
 
00:55
ieee data mining papers 2016 for ME,M.Tech.,M.Phil., Ph.D., B.E, B.Tech., MCA A Novel Recommendation Model Regularized with User Trust and Item Ratings Automatically Mining Facets for Queries from Their Search Results Booster in High Dimensional Data Classification Building an intrusion detection system using a filter-based feature selection algorithm Connecting Social Media to E-Commerce: Cold-Start Product Recommendation Using Microblogging Information Cross-Domain Sentiment Classification Using Sentiment Sensitive Embeddings Crowdsourcing for Top-K Query Processing over Uncertain Data Cyberbullying Detection based on Semantic-Enhanced Marginalized Denoising Auto-Encoder Domain-Sensitive Recommendation with User-Item Subgroup Analysis Efficient Algorithms for Mining Top-K High Utility Itemsets Efficient Cache-Supported Path Planning on Roads Mining User-Aware Rare Sequential Topic Patterns in Document Streams Nearest Keyword Set Search in Multi-Dimensional Datasets Rating Prediction based on Social Sentiment from Textual Reviews Location Aware Keyword Query Suggestion Based on Document Proximity Using Hashtag Graph-based Topic Model to Connect Semantically-related Words without Co-occurrence in Microblogs Quantifying Political Leaning from Tweets, Retweets, and Retweeters Relevance Feedback Algorithms Inspired By Quantum Detection Sentiment Embeddings with Applications to Sentiment Analysis Top-Down XML Keyword Query Processing TopicSketch: Real-time Bursty Topic Detection from Twitter Top-k Dominating Queries on Incomplete Data Understanding Short Texts through Semantic Enrichment and Hashing To get this project in ONLINE or through TRAINING Sessions, Contact: JP INFOTECH, Old No.31, New No.86, 1st Floor, 1st Avenue, Ashok Pillar, Chennai -83.Landmark: Next to Kotak Mahendra Bank. Pondicherry Office: JP INFOTECH, #45, Kamaraj Salai,Thattanchavady, Puducherry -9.Landmark: Next to VVP Nagar Arch. Mobile: (0) 9952649690, Email: [email protected], web: www.jpinfotech.org, Blog: www.jpinfotech.blogspot.com
Views: 2547 JPINFOTECH PROJECTS
Twitter Sentiment Analysis - Learn Python for Data Science #2
 
06:53
In this video we'll be building our own Twitter Sentiment Analyzer in just 14 lines of Python. It will be able to search twitter for a list of tweets about any topic we want, then analyze each tweet to see how positive or negative it's emotion is. The coding challenge for this video is here: https://github.com/llSourcell/twitter_sentiment_challenge Naresh's winning code from last episode: https://github.com/Naresh1318/GenderClassifier/blob/master/Run_Code.py Victor's Runner up code from last episode: https://github.com/Victor-Mazzei/ml-gender-python/blob/master/gender.py I created a Slack channel for us, sign up here: https://wizards.herokuapp.com/ More on TextBlob: https://textblob.readthedocs.io/en/dev/ Great info on Sentiment Analysis: https://www.quora.com/How-does-sentiment-analysis-work Great sentiment analysis api: http://www.alchemyapi.com/products/alchemylanguage/sentiment-analysis Read over these course notes if you wanna become an NLP god: http://cs224d.stanford.edu/syllabus.html Best book to become a Python god: https://learnpythonthehardway.org/ Please share this video, like, comment and subscribe! That's what keeps me going. Feel free to support me on Patreon: https://www.patreon.com/user?u=3191693 Two Minute Papers Link: https://www.youtube.com/playlist?list=PLujxSBD-JXgnqDD1n-V30pKtp6Q886x7e Follow me: Twitter: https://twitter.com/sirajraval Facebook: https://www.facebook.com/sirajology Instagram: https://www.instagram.com/sirajraval/ Instagram: https://www.instagram.com/sirajraval/ Signup for my newsletter for exciting updates in the field of AI: https://goo.gl/FZzJ5w Hit the Join button above to sign up to become a member of my channel for access to exclusive content!
Views: 264921 Siraj Raval
How to download iris dataset from UCI dataset and preparing data
 
05:36
Hi Today, I will shows how to download datasets from UCI dataset and prepare data Let GO 1. Go to web site UCI dataset https://archive.ics.uci.edu/ml/datasets.html 2. Choose the dataset, iris dataset 3. Click Data Folder 4. Click iris.data 5. Copy all text 6. Paste to Notepad++ 7. Replace following Iris-setosa 1,-1,-1 Iris-versicolor -1,1,-1 Iris-virginica -1,-1,1 Thank you ^^
Views: 5573 COMSCI Channel
The Data Analysis Process
 
05:39
The process of doing statistical analysis follows a clearly defined sequence of steps whether the analysis is being done in a formal setting like a medical lab or informally like you would find in a corporate environment. This lecture gives a brief overview of the process.
Views: 54026 White Crane Education
AN EFFICIENT PREDICTION OF CANCER USING DATA MINING TECHNIQUE
 
11:59
Cancer is one of the major causes of death when compared to all other diseases. Cancer has become the most hazardous types of disease among the living creature in the world. Early detection of cancer is essential in reducing life losses. This work aims to establish an accurate classification model for Cancer prediction, in order to make full use of the invaluable information in clinical data. The dataset is divided into training set and test set. In this experiment, we compare six classification techniques in Weka software and comparison results show that Support Vector Machine (SVM) has higher prediction accuracy than those methods. Different methods for cancer detection are explored and their accuracies are compared. With these results, we infer that the SVM are more suitable in handling the classification problem of cancer prediction, and we recommend the use of these approaches in similar classification problems. This work presents a comparison among the different Data mining classifiers on the database of cancer, by using classification accuracy.
Views: 4702 David Clinton
Predicting the Winning Team with Machine Learning
 
29:37
Can we predict the outcome of a football game given a dataset of past games? That's the question that we'll answer in this episode by using the scikit-learn machine learning library as our predictive tool. Code for this video: https://github.com/llSourcell/Predicting_Winning_Teams Please Subscribe! And like. And comment. More learning resources: https://arxiv.org/pdf/1511.05837.pdf https://doctorspin.me/digital-strategy/machine-learning/ https://dashee87.github.io/football/python/predicting-football-results-with-statistical-modelling/ http://data-informed.com/predict-winners-big-games-machine-learning/ https://github.com/ihaque/fantasy https://www.credera.com/blog/business-intelligence/using-machine-learning-predict-nfl-games/ Join us in the Wizards Slack channel: http://wizards.herokuapp.com/ And please support me on Patreon: https://www.patreon.com/user?u=3191693 Follow me: Twitter: https://twitter.com/sirajraval Facebook: https://www.facebook.com/sirajology Instagram: https://www.instagram.com/sirajraval/ Instagram: https://www.instagram.com/sirajraval/ Signup for my newsletter for exciting updates in the field of AI: https://goo.gl/FZzJ5w Hit the Join button above to sign up to become a member of my channel for access to exclusive content!
Views: 92643 Siraj Raval
Kaggle Live-Coding: Reproducing Research Project (part 1) | Kaggle
 
01:01:58
Join Kaggle Data Scientist Rachael as she works on reproducing the figures and analysis from a research paper. You can read the paper here: https://econjwatch.org/articles/shy-of-the-character-limit-twitter-mood-predicts-the-stock-market-revisited The paper Github repo is here: https://github.com/shabbychef/bogbt This footage has not been edited so you can see the whole process, errors and all. :) SUBSCRIBE: http://www.youtube.com/user/kaggledotcom?sub_confirmation=1&utm_medium=youtube&utm_source=channel&utm_campaign=yt-sub About Kaggle: Kaggle is the world's largest community of data scientists. Join us to compete, collaborate, learn, and do your data science work. Kaggle's platform is the fastest way to get started on a new data science project. Spin up a Jupyter notebook with a single click. Build with our huge repository of free code and data. Stumped? Ask the friendly Kaggle community for help. Follow Kaggle online: Visit the WEBSITE: http://www.kaggle.com/?utm_medium=youtube&utm_source=channel&utm_campaign=yt-kg Like Kaggle on FACEBOOK: http://www.facebook.com/kaggle?utm_medium=youtube&utm_source=channel&utm_campaign=yt-fb Follow Kaggle on TWITTER: http://twitter.com/kaggle?utm_medium=youtube&utm_source=channel&utm_campaign=yt-tw Check out our BLOG: http://blog.kaggle.com/?utm_medium=youtube&utm_source=channel&utm_campaign=yt-blog Connect with us on LINKEDIN: http://www.linkedin.com/company/kaggle?utm_medium=youtube&utm_source=channel&utm_campaign=yt-lkn Advance your data science skills: Take our free online courses: http://www.kaggle.com/learn/overview?utm_medium=youtube&utm_source=channel&utm_campaign=yt-learn Get started with Kaggle Kernels: http://www.kaggle.com/docs/kernels?utm_medium=youtube&utm_source=channel&utm_campaign=yt-krnl Download clean datasets from Kaggle: http://www.kaggle.com/docs/datasets?utm_medium=youtube&utm_source=channel&utm_campaign=yt-datast Sign up for a Kaggle Competition: http://www.kaggle.com/docs/competitions?utm_medium=youtube&utm_source=channel&utm_campaign=yt-comps Explore the Kaggle Public API: http://www.kaggle.com/docs/api?utm_medium=youtube&utm_source=channel&utm_campaign=yt-docs Kaggle Live-Coding: Reproducing Research Project (part 1) | Kaggle https://www.youtube.com/watch?v=352wMM6b2oo Kaggle http://www.youtube.com/user/kaggledotcom
Views: 809 Kaggle
Diagnosis of Lung Cancer Prediction System Using Data Mining Classification Techniques
 
08:39
Including Packages ======================= * Base Paper * Complete Source Code * Complete Documentation * Complete Presentation Slides * Flow Diagram * Database File * Screenshots * Execution Procedure * Readme File * Addons * Video Tutorials * Supporting Softwares Specialization ======================= * 24/7 Support * Ticketing System * Voice Conference * Video On Demand * * Remote Connectivity * * Code Customization ** * Document Customization ** * Live Chat Support * Toll Free Support * Call Us:+91 967-774-8277, +91 967-775-1577, +91 958-553-3547 Shop Now @ http://clickmyproject.com Get Discount @ https://goo.gl/lGybbe Chat Now @ http://goo.gl/snglrO Visit Our Channel: http://www.youtube.com/clickmyproject Mail Us: [email protected]
Views: 6753 Clickmyproject
Predicting Instructor Performance Using Data Mining Techniques in Higher Education
 
02:21
Predicting Instructor Performance Using Data Mining Techniques in Higher Education -- Data mining applications are becoming a more common tool in understanding and solving educational and administrative problems in higher education. In general, research in educational mining focuses on modeling student's performance instead of instructors' performance. One of the common tools to evaluate instructors' performance is the course evaluation questionnaire to evaluate based on students' perception. In this paper, four different classication techniquesdecision tree algorithms, support vector machines, articial neural networks, and discriminant analysisare used to build classier models. Their performances are compared over a data set composed of responses of students to a real course evaluation questionnaire using accuracy, precision, recall, and specicity performance metrics. Although all the classier models show comparably high classication performances, C5.0 classier is the best with respect to accuracy, precision, and specicity. In addition, an analysis of the variable importance for each classier model is done. Accordingly, it is shown that many of the questions in the course evaluation questionnaire appear to be irrelevant. Furthermore, the analysis shows that the instructors' success based on the students' perception mainly depends on the interest of the students in the course. The ndings of this paper indicate the effectiveness and expressiveness of data mining models in course evaluation and higher education mining. Moreover, these ndings may be used to improve the measurement instruments. Articial neural networks, classication algorithms, decision trees, linear discriminant analysis, performance evaluation, support vector machines. -- For More Details Contact Us -- S.Venkatesan Arihant Techno Solutions Pudukkottai www.arihants.com Mobile: +91 75984 92789
Data Mining Research Projects | Data Mining Research Thesis | Data Mining Research Code Projects
 
02:31
Contact Best Matlab Simulation Projects Visit us: http://matlabsimulation.com/
Views: 49 matlab simulation
Introduction to Text and Data Mining
 
32:27
Heard about Text and Data Mining (TDM) and wondering if it might be a good fit for your research? Find out what text and data mining is and how it can usefully be applied in a research context. Also learn about data sources for text and data mining projects and support, tools, and resources for learning more.
Views: 77 UniSydneyLibrary
Data Mining PubMed using ai-one's Analyst-Toolbox
 
04:03
Dr. Darius Schneider provides a testimonial on the use of Analyst-Toolbox to shorten literature review times of PubMed by more than 95%. Analyst-Toolbox is a data mining tool that uses ai-one's Nathan technology to find relevant documents in big data sets. It works where keyword searches fail by automatically detecting "what matters most" without any training.
Views: 1215 ai-one
K mean clustering algorithm with solve example
 
12:13
#kmean datawarehouse #datamining #lastmomenttuitions Take the Full Course of Datawarehouse What we Provide 1)22 Videos (Index is given down) + Update will be Coming Before final exams 2)Hand made Notes with problems for your to practice 3)Strategy to Score Good Marks in DWM To buy the course click here: https://lastmomenttuitions.com/course/data-warehouse/ Buy the Notes https://lastmomenttuitions.com/course/data-warehouse-and-data-mining-notes/ if you have any query email us at [email protected] Index Introduction to Datawarehouse Meta data in 5 mins Datamart in datawarehouse Architecture of datawarehouse how to draw star schema slowflake schema and fact constelation what is Olap operation OLAP vs OLTP decision tree with solved example K mean clustering algorithm Introduction to data mining and architecture Naive bayes classifier Apriori Algorithm Agglomerative clustering algorithmn KDD in data mining ETL process FP TREE Algorithm Decision tree
Views: 350636 Last moment tuitions
Weka Data Mining Tutorial for First Time & Beginner Users
 
23:09
23-minute beginner-friendly introduction to data mining with WEKA. Examples of algorithms to get you started with WEKA: logistic regression, decision tree, neural network and support vector machine. Update 7/20/2018: I put data files in .ARFF here http://pastebin.com/Ea55rc3j and in .CSV here http://pastebin.com/4sG90tTu Sorry uploading the data file took so long...it was on an old laptop.
Views: 455571 Brandon Weinberg
The Best Way to Visualize a Dataset Easily
 
07:41
In this video, we'll visualize a dataset of body metrics collected by giving people a fitness tracking device. We'll go over the steps necessary to preprocess the data, then use a technique called T-SNE to reduce the dimensionality of our data so we can visualize it. Code + challenge for this video: https://github.com/llSourcell/visualize_dataset_demo Keagan's winning code: https://github.com/WeldFire/prepare_dataset_challenge Vishal's runner-up code: https://github.com/erilyth/Pokemon-Type-Classification-Challenge Join us in the Wizards Slack channel: http://wizards.herokuapp.com/ Live T-SNE demo in the browser: http://cs.stanford.edu/people/karpathy/tsnejs/ More learning resources: https://www.oreilly.com/learning/an-illustrated-introduction-to-the-t-sne-algorithm https://indico.io/blog/visualizing-with-t-sne/ http://blog.applied.ai/visualising-high-dimensional-data/ http://machinelearningmastery.com/visualize-machine-learning-data-python-pandas/ Please subscribe! And like. And comment. That's what keeps me going. And please support me on Patreon: https://www.patreon.com/user?u=3191693 Follow me: Twitter: https://twitter.com/sirajraval Facebook: https://www.facebook.com/sirajology Instagram: https://www.instagram.com/sirajraval/ Instagram: https://www.instagram.com/sirajraval/ Signup for my newsletter for exciting updates in the field of AI: https://goo.gl/FZzJ5w Hit the Join button above to sign up to become a member of my channel for access to exclusive content!
Views: 219293 Siraj Raval
Geoff Webb - Analysis and Mining Large Data Sets
 
24:29
Geoffrey I. Webb is Professor of Computer Science at Monash University, Founder and Director of Data Mining software development and consultancy company G. I. Webb and Associates, and Editor-in-Chief of the journal Data Mining and Knowledge Discovery. Before joining Monash University he was on the faculty at Griffith University from 1986 to 1988 and then at Deakin University from 1988 to 2002. Webb has published more than 180 scientific papers in the fields of machine learning, data science, data mining, data analytics, big data and user modeling. He is an editor of the Encyclopedia of Machine Learning. Webb created the Averaged One-Dependence Estimators machine learning algorithm and its generalization Averaged N-Dependence Estimators and has worked extensively on statistically sound association rule learning. Webb's awards include IEEE Fellow, the IEEE International Conference on Data Mining Outstanding Service Award, an Australian Research Council Outstanding Researcher Award and multiple Australian Research Council Discovery Grants. Webb is a Foundation Member of the Editorial Advisory Board of the journal Statistical Analysis and Data Mining, Wiley Inter Science. He has served on the Editorial Boards of the journals Machine Learning, ACM Transactions on Knowledge Discovery in Data,User Modeling and User Adapted Interaction,and Knowledge and Information Systems. https://en.wikipedia.org/wiki/Geoff_Webb http://www.infotech.monash.edu.au/research/profiles/profile.html?sid=4540&pid=122 http://www.csse.monash.edu.au/~webb Interviewed by Kevin Korb and Adam Ford Many thanks for watching! - Support me via Patreon: https://www.patreon.com/scifuture - Please Subscribe to this Channel: http://youtube.com/subscription_center?add_user=TheRationalFuture - Science, Technology & the Future website: http://scifuture.org
Java in production for Data Mining Research projects (JET'15, Minsk)
 
57:22
Alexey Zinoviev presented this paper on the JET conference Slides: http://www.slideshare.net/zaleslaw/javadaykiev15-java-in-production-for-data-mining-research-projects This paper covers next topics: Data Mining, Machine Learning, Hadoop, Spark, MLlib
Views: 172 Alexey Zinoviev
International Journal of Data Mining & Knowledge Management Process (IJDKP)
 
00:36
International Journal of Data Mining & Knowledge Management Process ( IJDKP ) http://airccse.org/journal/ijdkp/ijdkp.html ISSN : 2230 - 9608[Online] ; 2231 - 007X [Print] Call for Papers Data mining and knowledge discovery in databases have been attracting a significant amount of research, industry, and media attention of late. There is an urgent need for a new generation of computational theories and tools to assist researchers in extracting useful information from the rapidly growing volumes of digital data. This Journal provides a forum for researchers who address this issue and to present their work in a peer-reviewed open access forum. Authors are solicited to contribute to the workshop by submitting articles that illustrate research results, projects, surveying works and industrial experiences that describe significant advances in the following areas, but are not limited to these topics only. Data Mining Foundations Parallel and Distributed Data Mining Algorithms, Data Streams Mining, Graph Mining, Spatial Data Mining, Text video, Multimedia Data Mining, Web Mining,Pre-Processing Techniques, Visualization, Security and Information Hiding in Data Mining Data Mining Applications Databases, Bioinformatics, Biometrics, Image Analysis, Financial Mmodeling, Forecasting, Classification, Clustering, Social Networks, Educational Data Mining Knowledge Processing Data and Knowledge Representation, Knowledge Discovery Framework and Process, Including Pre- and Post-Processing, Integration of Data Warehousing, OLAP and Data Mining, Integrating Constraints and Knowledge in the KDD Process , Exploring Data Analysis, Inference of Causes, Prediction, Evaluating, Consolidating and Explaining Discovered Knowledge, Statistical Techniques for Generation a Robust, Consistent Data Model, Interactive Data Exploration Visualization and Discovery, Languages and Interfaces for Data Mining, Mining Trends, Opportunities and Risks, Mining from Low-Quality Information Sources Paper submission Authors are invited to submit papers for this journal through e-mail [email protected] . Submissions must be original and should not have been published previously or be under consideration for publication while being evaluated for this Journal.
Views: 177 ijdkp jou
Introduction to Data Science with R - Data Analysis Part 1
 
01:21:50
Part 1 in a in-depth hands-on tutorial introducing the viewer to Data Science with R programming. The video provides end-to-end data science training, including data exploration, data wrangling, data analysis, data visualization, feature engineering, and machine learning. All source code from videos are available from GitHub. NOTE - The data for the competition has changed since this video series was started. You can find the applicable .CSVs in the GitHub repo. Blog: http://daveondata.com GitHub: https://github.com/EasyD/IntroToDataScience I do Data Science training as a Bootcamp: https://goo.gl/OhIHSc
Views: 964318 David Langer
Searching and mining trillions of time series subsequences under dynamic time warping (KDD 2012)
 
24:09
Searching and mining trillions of time series subsequences under dynamic time warping KDD 2012 Thanawin Rakthanmanon Bilson Campana Abdullah Mueen Gustavo Batista Brandon Westover Qiang Zhu Jesin Zakaria Eamonn Keogh Most time series data mining algorithms use similarity search as a core subroutine, and thus the time taken for similarity search is the bottleneck for virtually all time series data mining algorithms. The difficulty of scaling search to large datasets largely explains why most academic work on time series data mining has plateaued at considering a few millions of time series objects, while much of industry and science sits on billions of time series objects waiting to be explored. In this work we show that by using a combination of four novel ideas we can search and mine truly massive time series for the first time. We demonstrate the following extremely unintuitive fact; in large datasets we can exactly search under DTW much more quickly than the current state-of-the-art Euclidean distance search algorithms. We demonstrate our work on the largest set of time series experiments ever attempted. In particular, the largest dataset we consider is larger than the combined size of all of the time series datasets considered in all data mining papers ever published. We show that our ideas allow us to solve higher-level time series data mining problem such as motif discovery and clustering at scales that would otherwise be untenable. In addition to mining massive datasets, we will show that our ideas also have implications for real-time monitoring of data streams, allowing us to handle much faster arrival rates and/or use cheaper and lower powered devices than are currently possible.
Nikunj Oza: "Data-driven Anomaly Detection" | Talks at Google
 
53:03
This talk will describe recent work by the NASA Data Sciences Group on data-driven anomaly detection applied to air traffic control over Los Angeles, Denver, and New York. This data mining approach is designed to discover operationally significant flight anomalies, which were not pre-defined. These methods are complementary to traditional exceedance-based methods, in that they are more likely to yield false alarms, but they are also more likely to find previously-unknown anomalies. We discuss the discoveries that our algorithms have made that exceedance-based methods did not identify. Nikunj Oza is the leader of the Data Sciences Group at NASA Ames Research Center. He also leads a NASA project team which applies data mining to aviation safety. Dr. Ozaąs 40+ research papers represent his research interests which include data mining, machine learning, anomaly detection, and their applications to Aeronautics and Earth Science. He received the Arch T. Colwell Award for co-authoring one of the five most innovative technical papers selected from 3300+ SAE technical papers in 2005. His data mining team received the 2010 NASA Aeronautics Research Mission Directorate Associate Administratorąs Award for best technology achievements by a team. He received his B.S. in Mathematics with Computer Science from MIT in 1994, and M.S. (in 1998) and Ph.D. (in 2001) in Computer Science from the University of California at Berkeley.
Views: 7978 Talks at Google
Quick Data Analysis with Google Sheets | Part 1
 
11:40
Spreadsheet software like Excel or Google Sheets are still a very widely used toolset for analyzing data. Sheets has some built-in Quick analysis features that can help you to get a overview on your data and very fast get to insights. #DataAnalysis #GoogleSheet #measure 🔗 Links mentioned in the video: Supermetrics: http://supermetrics.com/?aff=1014 GA Demo account: https://support.google.com/analytics/answer/6367342?hl=en 🎓 Learn more from Measureschool: http://measureschool.com/products GTM Copy Paste https://chrome.google.com/webstore/detail/gtm-copy-paste/mhhidgiahbopjapanmbflpkcecpciffa 🚀Looking to kick-start your data journey? Hire us: https://measureschool.com/services/ 📚 Recommended Measure Books: https://kit.com/Measureschool/recommended-measure-books 📷 Gear we used to produce this video: https://kit.com/Measureschool/measureschool-youtube-gear Our tracking stack: Google Analytics: https://analytics.google.com/analytics/web/ Google Tag Manager: https://tagmanager.google.com/ Supermetrics: http://supermetrics.com/?aff=1014 ActiveCampaign: https://www.activecampaign.com/?_r=K93ZWF56 👍 FOLLOW US Facebook: http://www.facebook.com/measureschool Twitter: http://www.twitter.com/measureschool
Views: 15142 Measureschool
How to Make a Data Science Project with Kaggle (AI Adventures)
 
21:00
It can take a lot of tools to do data science, but Kaggle is a one-stop shop that provides all the tools to share and collaborate on data science projects. In the episode of AI Adventures, Yufeng is joined by Megan Risdal, product lead for datasets at Kaggle. They’ll teach you how to make a data science project with Kaggle, and more! Associated blog post → http://bit.ly/2u18Tyh Get started with Kaggle → https://kaggle.com/datasets Introduction to Kaggle Kernels → http://bit.ly/2z409xm [Dataset] LA County Health Code Violations → http://bit.ly/2MFwyvO [Kernel] Exploring LA County Health Code Violations → http://bit.ly/2KIBz6e Watch more AI Adventures → http://bit.ly/AIAdventures Subscribe to the Google Cloud Platform channel → http://bit.ly/GCloudPlatform
Views: 40065 Google Cloud Platform
Text Data Mining Research Using Copyrighted & Use-Limited Text Data
 
24:03
Text Data Mining (TDM) Research Using Copyrighted and Use-Limited Text Data Sets: Developing an Agenda to Support Scholarly Use Beth Sandore Namachchivaya University Librarian University of Waterloo See https://www.cni.org/topics/information-access-retrieval/text-data-mining-tdm-research-using-copyrighted-and-use-limited-text-data-sets-developing-an-agenda-to-support-scholarly-use for more information about this talk. Coalition for Networked Information (CNI) Spring 2018 Membership Meeting April 12-13, 2018 Washington, DC cni.org/mm/spring-2018/
Sentiment Analysis in 4 Minutes
 
04:51
Link to the full Kaggle tutorial w/ code: https://www.kaggle.com/c/word2vec-nlp-tutorial/details/part-1-for-beginners-bag-of-words Sentiment Analysis in 5 lines of code: http://blog.dato.com/sentiment-analysis-in-five-lines-of-python I created a Slack channel for us, sign up here: https://wizards.herokuapp.com/ The Stanford Natural Language Processing course: https://class.coursera.org/nlp/lecture Cool API for sentiment analysis: http://www.alchemyapi.com/products/alchemylanguage/sentiment-analysis I recently created a Patreon page. If you like my videos, feel free to help support my effort here!: https://www.patreon.com/user?ty=h&u=3191693 Follow me: Twitter: https://twitter.com/sirajraval Facebook: https://www.facebook.com/sirajology Instagram: https://www.instagram.com/sirajraval/ Instagram: https://www.instagram.com/sirajraval/ Signup for my newsletter for exciting updates in the field of AI: https://goo.gl/FZzJ5w Hit the Join button above to sign up to become a member of my channel for access to exclusive content!
Views: 99779 Siraj Raval
2018 IEEE Transaction Papers:Datamining top 7 easy understanding and implementable papers
 
03:30
These papers easy to understand and implement. Paper 1: Mining Competitors from Large Unstructured Datasets. Paper 2: Hierarchy-Cutting Model based Association Semantic for Analyzing Domain Topic on the Web. paper 3: Efficient Keyword-Aware Representative Travel Route Recommendation. Paper 4: Learning from Cross-Domain Media Streams for Event-of-Interest Discovery. Paper 5: Mining Fashion Outfit Composition Using An End-to-End Deep Learning Approach on Set Data. Paper 6: Building and Querying an Enterprise Knowledge Graph. Paper 7: Image Re-ranking based on Topic Diversity.
Views: 346 Ashwini Cly
SPSS Questionnaire/Survey Data Entry - Part 1
 
04:27
How to enter and analyze questionnaire (survey) data in SPSS is illustrated in this video. Lots more Questionnaire/Survey & SPSS Videos here: https://www.udemy.com/survey-data/?couponCode=SurveyLikertVideosYT Check out our next text, 'SPSS Cheat Sheet,' here: http://goo.gl/b8sRHa. Prime and ‘Unlimited’ members, get our text for free. (Only 4.99 otherwise, but likely to increase soon.) Survey data Survey data entry Questionnaire data entry Channel Description: https://www.youtube.com/user/statisticsinstructor For step by step help with statistics, with a focus on SPSS. Both descriptive and inferential statistics covered. For descriptive statistics, topics covered include: mean, median, and mode in spss, standard deviation and variance in spss, bar charts in spss, histograms in spss, bivariate scatterplots in spss, stem and leaf plots in spss, frequency distribution tables in spss, creating labels in spss, sorting variables in spss, inserting variables in spss, inserting rows in spss, and modifying default options in spss. For inferential statistics, topics covered include: t tests in spss, anova in spss, correlation in spss, regression in spss, chi square in spss, and MANOVA in spss. New videos regularly posted. Subscribe today! YouTube Channel: https://www.youtube.com/user/statisticsinstructor Video Transcript: In this video we'll take a look at how to enter questionnaire or survey data into SPSS and this is something that a lot of people have questions with so it's important to make sure when you're working with SPSS in particular when you're entering data from a survey that you know how to do. Let's go ahead and take a few moments to look at that. And here you see on the right-hand side of your screen I have a questionnaire, a very short sample questionnaire that I want to enter into SPSS so we're going to create a data file and in this questionnaire here I've made a few modifications. I've underlined some variable names here and I'll talk about that more in a minute and I also put numbers in parentheses to the right of these different names and I'll also explain that as well. Now normally when someone sees this survey we wouldn't have gender underlined for example nor would we have these numbers to the right of male and female. So that's just for us, to help better understand how to enter these data. So let's go ahead and get started here. In SPSS the first thing we need to do is every time we have a possible answer such as male or female we need to create a variable in SPSS that will hold those different answers. So our first variable needs to be gender and that's why that's underlined there just to assist us as we're doing this. So we want to make sure we're in the Variable View tab and then in the first row here under Name we want to type gender and then press ENTER and that creates the variable gender. Now notice here I have two options: male and female. So when people respond or circle or check here that they're male, I need to enter into SPSS some number to indicate that. So we always want to enter numbers whenever possible into SPSS because SPSS for the vast majority of analyses performs statistical analyses on numbers not on words. So I wouldn't want and enter male, female, and so forth. I want to enter one's, two's and so on. So notice here I just arbitrarily decided males get a 1 and females get a 2. It could have been the other way around but since male was the first name listed I went and gave that 1 and then for females I gave a 2. So what we want to do in our data file here is go head and go to Values, this column, click on the None cell, notice these three dots appear they're called an ellipsis, click on that and then our first value notice here 1 is male so Value of 1 and then type Label Male and then click Add. And then our second value of 2 is for females so go ahead and enter 2 for Value and then Female, click Add and then we're done with that you want to see both of them down here and that looks good so click OK. Now those labels are in here and I'll show you how that works when we enter some numbers in a minute. OK next we have ethnicity so I'm going to call this variable ethnicity. So go ahead and type that in press ENTER and then we're going to the same thing we're going to create value labels here so 1 is African-American, 2 is Asian-American, and so on. And I'll just do that very quickly so going to Values column, click on the ellipsis. For 1 we have African American, for 2 Asian American, 3 is Caucasian, and just so you can see that here 3 is Caucasian, 4 is Hispanic, and other is 5, so let's go ahead and finish that. Four is Hispanic, 5 is other, so let's go to do that 5 is other. OK and that's it for that variable. Now we do have it says please state I'll talk about that next that's important when they can enter text we have to handle that differently.
Views: 553961 Quantitative Specialists
data mining and warehousing paper presentation
 
04:58
Thanks for Watching Please Subscribe to Our Channel Page: https://www.facebook.com/EmptyTVOfficial Group: https://www.facebook.com/groups/EmptyTVOfficial Subscribe Us: https://www.youtube.com/channel/UCN9-Kh20w7R2uDU4aPkkDfg
Views: 9 EmptyTV
How to calculate interquartile range IQR | Data and statistics | 6th grade | Khan Academy
 
06:12
Learn how to calculate the interquartile range, which is a measure of the spread of data in a data set. Practice this lesson yourself on KhanAcademy.org right now: https://www.khanacademy.org/math/cc-sixth-grade-math/cc-6th-data-statistics/cc-6th/e/calculating-the-interquartile-range--iqr-?utm_source=YT&utm_medium=Desc&utm_campaign=6thgrade Watch the next lesson: https://www.khanacademy.org/math/cc-sixth-grade-math/cc-6th-data-statistics/cc-6-mad/v/mean-absolute-deviation?utm_source=YT&utm_medium=Desc&utm_campaign=6thgrade Missed the previous lesson? https://www.khanacademy.org/math/cc-sixth-grade-math/cc-6th-data-statistics/cc-6th-box-whisker-plots/v/interpreting-box-plots?utm_source=YT&utm_medium=Desc&utm_campaign=6thgrade Grade 6th on Khan Academy: By the 6th grade, you're becoming a sophisticated mathemagician. You'll be able to add, subtract, multiply, and divide any non-negative numbers (including decimals and fractions) that any grumpy ogre throws at you. Mind-blowing ideas like exponents (you saw these briefly in the 5th grade), ratios, percents, negative numbers, and variable expressions will start being in your comfort zone. Most importantly, the algebraic side of mathematics is a whole new kind of fun! And if that is not enough, we are going to continue with our understanding of ideas like the coordinate plane (from 5th grade) and area while beginning to derive meaning from data! (Content was selected for this grade level based on a typical curriculum in the United States.) About Khan Academy: Khan Academy offers practice exercises, instructional videos, and a personalized learning dashboard that empower learners to study at their own pace in and outside of the classroom. We tackle math, science, computer programming, history, art history, economics, and more. Our math missions guide learners from kindergarten to calculus using state-of-the-art, adaptive technology that identifies strengths and learning gaps. We've also partnered with institutions like NASA, The Museum of Modern Art, The California Academy of Sciences, and MIT to offer specialized content. For free. For everyone. Forever. #YouCanLearnAnything Subscribe to Khan Academy‰Ûªs 6th grade channel: https://www.youtube.com/channel/UCnif494Ay2S-PuYlDVrOwYQ?sub_confirmation=1 Subscribe to Khan Academy: https://www.youtube.com/subscription_center?add_user=khanacademy
Views: 393706 Khan Academy
A Systematic Review on Educational Data Mining
 
10:45
Including Packages ======================= * Base Paper * Complete Source Code * Complete Documentation * Complete Presentation Slides * Flow Diagram * Database File * Screenshots * Execution Procedure * Readme File * Addons * Video Tutorials * Supporting Softwares Specialization ======================= * 24/7 Support * Ticketing System * Voice Conference * Video On Demand * * Remote Connectivity * * Code Customization ** * Document Customization ** * Live Chat Support * Toll Free Support * Call Us:+91 967-774-8277, +91 967-775-1577, +91 958-553-3547 Shop Now @ http://clickmyproject.com Get Discount @ https://goo.gl/dhBA4M Chat Now @ http://goo.gl/snglrO Visit Our Channel: https://www.youtube.com/user/clickmyproject Mail Us: [email protected]
Views: 59 Clickmyproject
SPSS for questionnaire analysis:  Correlation analysis
 
20:01
Basic introduction to correlation - how to interpret correlation coefficient, and how to chose the right type of correlation measure for your situation. 0:00 Introduction to bivariate correlation 2:20 Why does SPSS provide more than one measure for correlation? 3:26 Example 1: Pearson correlation 7:54 Example 2: Spearman (rhp), Kendall's tau-b 15:26 Example 3: correlation matrix I could make this video real quick and just show you Pearson's correlation coefficient, which is commonly taught in a introductory stats course. However, the Pearson's correlation IS NOT always applicable as it depends on whether your data satisfies certain conditions. So to do correlation analysis, it's better I bring together all the types of measures of correlation given in SPSS in one presentation. Watch correlation and regression: https://youtu.be/tDxeR6JT6nM ------------------------- Correlation of 2 rodinal variables, non monotonic This question has been asked a few times, so I will make a video on it. But to answer your question, monotonic means in one direction. I suggest you plot the 2 variables and you'll see whether or not there is a monotonic relationship there. If there is a little non-monotonic relationship then Spearman is still fine. Remember we are measuring the TENDENCY for the 2 variables to move up-up/down-down/up-down together. If you have strong non-monotonic shape in the plot ie. a curve then you could abandon correlation and do a chi-square test of association - this is the "correlation" for qualitative variables. And since your 2 variables are ordinal, they are qualitative. Good luck
Views: 511773 Phil Chan
Concept Drift Detector in Data Stream Mining
 
25:21
Jorge Casillas, Shuo Wang, Xin Yao, Concept Drift Detection in Histogram-Based Straightforward Data Stream Classification, 6th International Workshop on Data Science and Big Data Analytics, IEEE International Conference on Data Mining, November 17-20, 2018 - Singapore http://decsai.ugr.es/~casillas/downloads/papers/casillas-ci44-icdm18.pdf This presentation shows a novel algorithm to accurately detect changes in non-stationary data streams in a very efficiently way. If you want to know how the yacare caiman, the cheetah and the racer snake are related to this research, do not stop watching the video! More videos here: http://decsai.ugr.es/~casillas/videos.html
Views: 126 Jorge Casillas
Data Analytics for Beginners | Introduction to Data Analytics | Data Analytics Tutorial
 
01:27:18
Data Analytics for Beginners -Introduction to Data Analytics https://acadgild.com/big-data/data-analytics-training-certification?utm_campaign=enrol-data-analytics-beginners-THODdNXOjRw&utm_medium=VM&utm_source=youtube Hello and Welcome to data analytics tutorial conducted by ACADGILD. It’s an interactive online tutorial. Here are the topics covered in this training video: • Data Analysis and Interpretation • Why do I need an Analysis Plan? • Key components of a Data Analysis Plan • Analyzing and Interpreting Quantitative Data • Analyzing Survey Data • What is Business Analytics? • Application and Industry facts • Importance of Business analytics • Types of Analytics & examples • Data for Business Analytics • Understanding Data Types • Categorical Variables • Data Coding • Coding Systems • Coding, coding tip • Data Cleaning • Univariate Data Analysis • Statistics Describing a continuous variable distribution • Standard deviation • Distribution and percentiles • Analysis of categorical data • Observed Vs Expected Distribution • Identifying and solving business use cases • Recognizing, defining, structuring and analyzing the problem • Interpreting results and making the decision • Case Study Get started with Data Analytics with this tutorial. Happy Learning For more updates on courses and tips follow us on: Facebook: https://www.facebook.com/acadgild Twitter: https://twitter.com/acadgild LinkedIn: https://www.linkedin.com/company/acadgild
Views: 250620 ACADGILD
Study of Database Intrusion Detection Based on Improved Association Rule Algorithm
 
02:08
Title: Study of Database Intrusion Detection Based on Improved Association Rule Algorithm Domain: Data Mining Description: The proposed work is a hybrid approach that contains the detection of malicious and intrusive activity by combining two techniques, one is of association rule and second is Log mining. By combining these two methods we can achieve better efficiency by finding accurate intrusion in the database. The proposed method can be place on database management level and thus provide security to the database. The existing systems have limitations of missing few intrusions and high false positive rates and also they have overhead of creating profiles and keeping record of all the activities and update the large database every time. Intrusion detection technology refers to identify any activities of damage to the computer system security, integrity and confidentiality Different from the traditional operating system reinforcement, authentication and firewall security isolation technology, intrusion detection as an active dynamic security defence technologies, it provides internal attacks and external attacks and misuse in real-time protection. Data mining is an interdisciplinary field, affected by a number of disciplines, including database systems, statistics, machine learning, visualization and information science. There are many data mining methods commonly used in database intrusion detection, in which the association rule mining algorithm and sequential pattern mining algorithm are widely applied in particular. Association rule is to find the correlation of different items appeared in the same event. Association rule mining is to derive the implication relationships between data items under the conditions of a set of given project types and a number of records and through analyzing the records, the commonly used algorithm is Apriori algorithm. For more details contact: E-Mail: [email protected] Buy Whole Project Kit for Rs 5000%. Project Kit: • 1 Review PPT • 2nd Review PPT • Full Coding with described algorithm • Video File • Full Document Note: *For bull purchase of projects and for outsourcing in various domains such as Java, .Net, .PHP, NS2, Matlab, Android, Embedded, Bio-Medical, Electrical, Robotic etc. contact us. *Contact for Real Time Projects, Web Development and Web Hosting services. *Comment and share on this video and win exciting developed projects for free of cost. Search Terms: 1. 2017 ieee projects 2. latest ieee projects in java 3. latest ieee projects in data mining 4. 2017 – 2018 data mining projects 5. 2017 – 2018 best project center in Chennai 6. best guided ieee project center in Chennai 7. 2017 – 2018 ieee titles 8. 2017 – 2018 base paper 9. 2017 – 2018 java projects in Chennai, Coimbatore, Bangalore, and Mysore 10. time table generation projects 11. instruction detection projects in data mining, network security 12. 2017 – 2018 data mining weka projects 13. 2017 – 2018 b.e projects 14. 2017 – 2018 m.e projects 15. 2017 – 2018 final year projects 16. affordable final year projects 17. latest final year projects 18. best project center in Chennai, Coimbatore, Bangalore, and Mysore 19. 2017 Best ieee project titles 20. best projects in java domain 21. free ieee project in Chennai, Coimbatore, Bangalore, and Mysore 22. 2017 – 2018 ieee base paper free download 23. 2017 – 2018 ieee titles free download 24. best ieee projects in affordable cost 25. ieee projects free download 26. 2017 data mining projects 27. 2017 ieee projects on data mining 28. 2017 final year data mining projects 29. 2017 data mining projects for b.e 30. 2017 data mining projects for m.e 31. 2017 latest data mining projects 32. latest data mining projects 33. latest data mining projects in java 34. data mining projects in weka tool 35. data mining in intrusion detection system 36. intrusion detection system using data mining 37. intrusion detection system using data mining ppt 38. intrusion detection system using data mining technique 39. data mining approaches for intrusion detection 40. data mining in ranking system using weka tool 41. data mining projects using weka 42. data mining in bioinformatics using weka 43. data mining using weka tool 44. data mining tool weka tutorial 45. data mining abstract 46. data mining base paper 47. data mining research papers 2017 - 2018 48. 2017 - 2018 data mining research papers 49. 2017 data mining research papers 50. data mining IEEE Projects 52. data mining and text mining ieee projects 53. 2017 text mining ieee projects 54. text mining ieee projects 55. ieee projects in web mining 56. 2017 web mining projects 57. 2017 web mining ieee projects 58. 2017 data mining projects with source code 59. 2017 data mining projects for final year students 60. 2017 data mining projects in java 61. 2017 data mining projects for students
Data mining Projects 2017 | 2018 IEEE Project Titles on Data Mining using Java
 
00:48
Data mining Projects 2017 | 2018 IEEE Project Titles on Data Mining using Java An Iterative Classification Scheme for Sanitizing Large-Scale Datasets Analyzing Sentiments in One Go: A Supervised Joint Topic Modeling Approach Collaborative Filtering-Based Recommendation of Online Social Voting Computing Semantic Similarity of Concepts in Knowledge Graphs Detecting Stress Based on Social Interactions in Social Networks Dynamic Facet Ordering for Faceted Product Search Engines Efficient Clue-based Route Search on Road Networks Efficient Keyword-aware Representative Travel Route Recommendation Energy-efficient Query Processing in Web Search Engines Generating Query Facets using Knowledge Bases Influential Node Tracking on Dynamic Social Network: An Interchange Greedy Approach l-Injection: Toward Effective Collaborative Filtering Using Uninteresting Items Mining Competitors from Large Unstructured Datasets Modeling Information Diffusion over Social Networks for Temporal Dynamic Prediction Personal Web Revisitation by Context and Content Keywords with Relevance Feedback PPRank: Economically Selecting Initial Users for Influence Maximization in Social Networks QDA: A Query-Driven Approach to Entity Resolution Query Expansion with Enriched User Profiles for Personalized Search Utilizing Folksonomy Data RAPARE: A Generic Strategy for Cold-Start Rating Prediction Problem SociRank: Identifying and Ranking Prevalent News Topics Using Social Media Factors Towards Real-Time, Country-Level Location Classification of Worldwide Tweets Trajectory Community Discovery and Recommendation by Multi-source Diffusion Modeling Understand Short Texts by Harvesting and Analyzing Semantic Knowledge User Vitality Ranking and Prediction in Social Networking Services: a Dynamic Network Perspective User-Centric Similarity Search When to Make a Topic Popular Again? A Temporal Model for Topic Re-hotting Prediction in Online Social Networks http://jpinfotech.org/projects/2017-ieee-projects/java-projects/
Views: 1169 JPINFOTECH PROJECTS
Sentiment Analysis of Twitter Data | Final Year Projects 2016
 
08:20
Including Packages ======================= * Base Paper * Complete Source Code * Complete Documentation * Complete Presentation Slides * Flow Diagram * Database File * Screenshots * Execution Procedure * Readme File * Addons * Video Tutorials * Supporting Softwares Specialization ======================= * 24/7 Support * Ticketing System * Voice Conference * Video On Demand * * Remote Connectivity * * Code Customization ** * Document Customization ** * Live Chat Support * Toll Free Support * Call Us:+91 967-774-8277, +91 967-775-1577, +91 958-553-3547 Shop Now @ http://clickmyproject.com Get Discount @ https://goo.gl/lGybbe Chat Now @ http://goo.gl/snglrO Visit Our Channel: http://www.youtube.com/clickmyproject Mail Us: [email protected]
Views: 6736 Clickmyproject
How to Make a Text Summarizer - Intro to Deep Learning #10
 
09:06
I'll show you how you can turn an article into a one-sentence summary in Python with the Keras machine learning library. We'll go over word embeddings, encoder-decoder architecture, and the role of attention in learning theory. Code for this video (Challenge included): https://github.com/llSourcell/How_to_make_a_text_summarizer Jie's Winning Code: https://github.com/jiexunsee/rudimentary-ai-composer More Learning resources: https://www.quora.com/Has-Deep-Learning-been-applied-to-automatic-text-summarization-successfully https://research.googleblog.com/2016/08/text-summarization-with-tensorflow.html https://en.wikipedia.org/wiki/Automatic_summarization http://deeplearning.net/tutorial/rnnslu.html http://machinelearningmastery.com/text-generation-lstm-recurrent-neural-networks-python-keras/ Please subscribe! And like. And comment. That's what keeps me going. Join us in the Wizards Slack channel: http://wizards.herokuapp.com/ And please support me on Patreon: https://www.patreon.com/user?u=3191693 Follow me: Twitter: https://twitter.com/sirajraval Facebook: https://www.facebook.com/sirajology Instagram: https://www.instagram.com/sirajraval/ Instagram: https://www.instagram.com/sirajraval/ Signup for my newsletter for exciting updates in the field of AI: https://goo.gl/FZzJ5w Hit the Join button above to sign up to become a member of my channel for access to exclusive content!
Views: 154694 Siraj Raval
Moore Methods - Text and Data Mining (2017 update)
 
04:24
Researchers often have to go through lots of articles and papers to find key information for their own work. This can take quite a long time but what if there was a method that could help? In this video, we give an overview of Text and Data Mining (TDM). TDM is an interesting technique that can help with analysing text and other information quickly, allowing you to get results and get on with your work. Want to take things further? Check out our blog for more learning opportunities and activities: https://23researchthingscam.wordpress.com/2016/11/23/thing-19-text-and-data-mining/
Views: 265 Moore Library
Java as a fundamental working tool of the Data Scientist (Alexey Zinoviev, Joker, 2014)
 
55:10
Alexey Zinoviev presented this paper on the Jocker conference http://jokerconf.com/#zinoviev. Slides: http://www.slideshare.net/zaleslaw/java-for-data-scientist-zinoviev This paper covers next topics: Data Mining, Machine Learning, Mahout, Spark, MLlib, Python, Octave, R language
Views: 2447 Alexey Zinoviev
Dual Sentiment Analysis Considering Two Sides of One Review
 
02:02
Title: Dual Sentiment Analysis Considering Two Sides of One Review Domain: Data Mining Description: 1, Bag-of-words (BOW) is now the most popular way to model text in statistical machine learning approaches in sentiment analysis. However, the performance of BOW sometimes remains limited due to some fundamental deficiencies in handling the polarity shift problem. We propose a model called dual sentiment analysis (DSA), to address this problem for sentiment classification. 2, We first propose a novel data expansion technique by creating a sentiment-reversed review for each training and test review. On this basis, we propose a dual training algorithm to make use of original and reversed training reviews in pairs for learning a sentiment classifier, and a dual prediction algorithm to classify the test reviews by considering two sides of one review. 3, We also extend the DSA framework from polarity (positive-negative) classification to 3-class (positive-negative-neutral) classification, by taking the neutral reviews into consideration. Finally, we develop a corpus-based method to construct a pseudo-antonym dictionary, which removes DSA’s dependency on an external antonym dictionary for review reversion. 4, We conduct a wide range of experiments including two tasks, nine datasets, two antonym dictionaries, three classification algorithms, and two types of features. The results demonstrate the effectiveness of DSA in supervised sentiment classification. For more details contact: E-Mail: [email protected] Buy Whole Project Kit for Rs 5000%. Project Kit: • 1 Review PPT • 2nd Review PPT • Full Coding with described algorithm • Video File • Full Document Note: *For bull purchase of projects and for outsourcing in various domains such as Java, .Net, .PHP, NS2, Matlab, Android, Embedded, Bio-Medical, Electrical, Robotic etc. contact us. *Contact for Real Time Projects, Web Development and Web Hosting services. *Comment and share on this video and win exciting developed projects for free of cost. Search Terms: 1. 2017 ieee projects 2. latest ieee projects in java 3. latest ieee projects in data mining 4. 2017 – 2018 data mining projects 5. 2017 – 2018 best project center in Chennai 6. best guided ieee project center in Chennai 7. 2017 – 2018 ieee titles 8. 2017 – 2018 base paper 9. 2017 – 2018 java projects in Chennai, Coimbatore, Bangalore, and Mysore 10. time table generation projects 11. instruction detection projects in data mining, network security 12. 2017 – 2018 data mining weka projects 13. 2017 – 2018 b.e projects 14. 2017 – 2018 m.e projects 15. 2017 – 2018 final year projects 16. affordable final year projects 17. latest final year projects 18. best project center in Chennai, Coimbatore, Bangalore, and Mysore 19. 2017 Best ieee project titles 20. best projects in java domain 21. free ieee project in Chennai, Coimbatore, Bangalore, and Mysore 22. 2017 – 2018 ieee base paper free download 23. 2017 – 2018 ieee titles free download 24. best ieee projects in affordable cost 25. ieee projects free download 26. 2017 data mining projects 27. 2017 ieee projects on data mining 28. 2017 final year data mining projects 29. 2017 data mining projects for b.e 30. 2017 data mining projects for m.e 31. 2017 latest data mining projects 32. latest data mining projects 33. latest data mining projects in java 34. data mining projects in weka tool 35. data mining in intrusion detection system 36. intrusion detection system using data mining 37. intrusion detection system using data mining ppt 38. intrusion detection system using data mining technique 39. data mining approaches for intrusion detection 40. data mining in ranking system using weka tool 41. data mining projects using weka 42. data mining in bioinformatics using weka 43. data mining using weka tool 44. data mining tool weka tutorial 45. data mining abstract 46. data mining base paper 47. data mining research papers 2017 - 2018 48. 2017 - 2018 data mining research papers 49. 2017 data mining research papers 50. data mining IEEE Projects 52. data mining and text mining ieee projects 53. 2017 text mining ieee projects 54. text mining ieee projects 55. ieee projects in web mining 56. 2017 web mining projects 57. 2017 web mining ieee projects 58. 2017 data mining projects with source code 59. 2017 data mining projects for final year students 60. 2017 data mining projects in java 61. 2017 data mining projects for students
How to calculate Standard Deviation and Variance
 
05:05
Tutorial on calculating the standard deviation and variance for statistics class. The tutorial provides a step by step guide. Like us on: http://www.facebook.com/PartyMoreStudyLess Related Videos: How to Calculate Mean and Standard Deviation Using Excel http://www.youtube.com/watch?v=efdRmGqCYBk Why are degrees of freedom (n-1) used in Variance and Standard Deviation http://www.youtube.com/watch?v=92s7IVS6A34 Playlist of z scores http://www.youtube.com/course?list=EC6157D8E20C151497 David Longstreet Professor of the Universe Like us on: http://www.facebook.com/PartyMoreStudyLess Professor of the Universe: David Longstreet http://www.linkedin.com/in/davidlongstreet/ MyBookSucks.Com
Views: 1655355 statisticsfun
Clustering Individual Transactional Data for Masses of Users
 
20:26
Author: Riccardo Guidotti, National Research Council (CNR) Abstract: Mining a large number of datasets recording human activities for making sense of individual data is the key enabler of a new wave of personalized knowledge-based services. In this paper we focus on the problem of clustering individual transactional data for a large mass of users. Transactional data is a very pervasive kind of information that is collected by several services, often involving huge pools of users. We propose txmeans, a parameter-free clustering algorithm able to efficiently partitioning transactional data in a completely automatic way. Txmeans is designed for the case where clustering must be applied on a massive number of different datasets, for instance when a large set of users need to be analyzed individually and each of them has generated a long history of transactions. A deep experimentation on both real and synthetic datasets shows the practical effectiveness of txmeans for the mass clustering of different personal datasets, and suggests that txmeans outperforms existing methods in terms of quality and efficiency. Finally, we present a personal cart assistant application based on txmeans. More on http://www.kdd.org/kdd2017/ KDD2017 Conference is published on http://videolectures.net/
Views: 386 KDD2017 video
Statistical Text Analysis for Social Science
 
01:04:01
What can text analysis tell us about society? Corpora of news, books, and social media encode human beliefs and culture. But it is impossible for a researcher to read all of today's rapidly growing text archives. My research develops statistical text analysis methods that measure social phenomena from textual content, especially in news and social media data. For example: How do changes to public opinion appear in microblogs? What topics get censored in the Chinese Internet? What character archetypes recur in movie plots? How do geography and ethnicity affect the diffusion of new language? In order to answer these questions effectively, we must apply and develop scientific methods in statistics, computation, and linguistics. In this talk I will illustrate these methods in a project that analyzes events in international politics. Political scientists are interested in studying international relations through *event data*: time series records of who did what to whom, as described in news articles. To address this event extraction problem, we develop an unsupervised Bayesian model of semantic event classes, which learns the verbs and textual descriptions that correspond to types of diplomatic and military interactions between countries. The model uses dynamic logistic normal priors to drive the learning of semantic classes; but unlike a topic model, it leverages deeper linguistic analysis of syntactic argument structure. Using a corpus of several million news articles over 15 years, we quantitatively evaluate how well its event types match ones defined by experts in previous work, and how well its inferences about countries correspond to real-world conflict. The method also supports exploratory analysis; for example, of the recent history of Israeli-Palestinian relations.
Views: 1364 Microsoft Research
MATLAB tutorial - Machine Learning Clustering
 
06:38
Kmean and Tree Clustering are introduced in this video. ======================== ✅ Visit our website http://www.eeprogrammer.com ✅ Subscribe for more free YouTube tutorial https://www.youtube.com/user/eeprogrammer?sub_confirmation=1 🔴 Watch my most recent upload: https://www.youtube.com/user/eeprogrammer 🔴 MATLAB tutorial - Machine Learning Clustering https://www.youtube.com/watch?v=oY_l4fFrg6s 🔴 MATLAB tutorial - Machine Learning Discriminant Analysis https://www.youtube.com/watch?v=MaxEODBNNEs 🔴 How to write a research paper in 4 steps with example https://www.youtube.com/watch?v=jntSd2mL_Pc 🔴 How to choose a research topic: https://www.youtube.com/watch?v=LP7xSLKLw5I ✅ If your research or engineering projects are falling behind, EEprogrammer.com can help you get them back on track without exploding your budget.
Views: 838 eeprogrammer
On the Anonymization of Sparse High-Dimensional Data
 
01:13
Title: On the Anonymization of Sparse High-Dimensional Data Domain: Data Mining Description: 1, Privacy preservation is the most focussed issue in information publication, on the grounds that the sensitive data shouldn't be disclosed. For this regard, several privacy preservation data mining algorithms are proposed. 2, Generalisation, Bucketisation and Anatomisation techniques are used as a part of this regard. They ensure the privacy of the user,either by modifying quasi identifier values or by including noise. 3, These techniques are well suited for low dimensional data and they expel the most valuable information from the dataset.In this work,we concentrate on protection against identity disclosure in the publication of sparse high dimensional data. 4, The sparse dataset which is scanty has less information distributed in the entire dataset.So,in the first phase we transform the dataset into a band matrix framework by coordinating Genetic algorithm with Cuckoo search algorithm.This makes the nearest rows associated and makes the non zero components near to the diagonal and lessens the search space and also memory. 5, In the other phase a novel anatomisation technique based on disassociation is introduced to safeguard privacy.This technique isolates the quasi identifier values with sensitive attributes and publishes quasi identifiers straightforwardly.Then density based clustering is employed to anonymise the underlying data,ands protects against identity disclosure and increases data utility The adversary cannot relate the sensitive value with high probability.Experimental results demonstrate that this technique decreases information loss, reconstruction error and increases data utility. For more details contact: E-Mail: [email protected] Buy Whole Project Kit for Rs 5000%. Project Kit: • 1 Review PPT • 2nd Review PPT • Full Coding with described algorithm • Video File • Full Document Note: *For bull purchase of projects and for outsourcing in various domains such as Java, .Net, .PHP, NS2, Matlab, Android, Embedded, Bio-Medical, Electrical, Robotic etc. contact us. *Contact for Real Time Projects, Web Development and Web Hosting services. *Comment and share on this video and win exciting developed projects for free of cost. Search Terms: 1. 2017 ieee projects 2. latest ieee projects in java 3. latest ieee projects in data mining 4. 2017 – 2018 data mining projects 5. 2017 – 2018 best project center in Chennai 6. best guided ieee project center in Chennai 7. 2017 – 2018 ieee titles 8. 2017 – 2018 base paper 9. 2017 – 2018 java projects in Chennai, Coimbatore, Bangalore, and Mysore 10. time table generation projects 11. instruction detection projects in data mining, network security 12. 2017 – 2018 data mining weka projects 13. 2017 – 2018 b.e projects 14. 2017 – 2018 m.e projects 15. 2017 – 2018 final year projects 16. affordable final year projects 17. latest final year projects 18. best project center in Chennai, Coimbatore, Bangalore, and Mysore 19. 2017 Best ieee project titles 20. best projects in java domain 21. free ieee project in Chennai, Coimbatore, Bangalore, and Mysore 22. 2017 – 2018 ieee base paper free download 23. 2017 – 2018 ieee titles free download 24. best ieee projects in affordable cost 25. ieee projects free download 26. 2017 data mining projects 27. 2017 ieee projects on data mining 28. 2017 final year data mining projects 29. 2017 data mining projects for b.e 30. 2017 data mining projects for m.e 31. 2017 latest data mining projects 32. latest data mining projects 33. latest data mining projects in java 34. data mining projects in weka tool 35. data mining in intrusion detection system 36. intrusion detection system using data mining 37. intrusion detection system using data mining ppt 38. intrusion detection system using data mining technique 39. data mining approaches for intrusion detection 40. data mining in ranking system using weka tool 41. data mining projects using weka 42. data mining in bioinformatics using weka 43. data mining using weka tool 44. data mining tool weka tutorial 45. data mining abstract 46. data mining base paper 47. data mining research papers 2017 - 2018 48. 2017 - 2018 data mining research papers 49. 2017 data mining research papers 50. data mining IEEE Projects 52. data mining and text mining ieee projects 53. 2017 text mining ieee projects 54. text mining ieee projects 55. ieee projects in web mining 56. 2017 web mining projects 57. 2017 web mining ieee projects 58. 2017 data mining projects with source code 59. 2017 data mining projects for final year students 60. 2017 data mining projects in java 61. 2017 data mining projects for students
A Systematic Review on Educational Data Mining | Final year Projects 2016 - 2017
 
19:41
Including Packages ======================= * Base Paper * Complete Source Code * Complete Documentation * Complete Presentation Slides * Flow Diagram * Database File * Screenshots * Execution Procedure * Readme File * Addons * Video Tutorials * Supporting Softwares Specialization ======================= * 24/7 Support * Ticketing System * Voice Conference * Video On Demand * * Remote Connectivity * * Code Customization ** * Document Customization ** * Live Chat Support * Toll Free Support * Call Us:+91 967-774-8277, +91 967-775-1577, +91 958-553-3547 Shop Now @ http://clickmyproject.com Get Discount @ https://goo.gl/dhBA4M Chat Now @ http://goo.gl/snglrO Visit Our Channel: https://www.youtube.com/user/myprojectbazaar Mail Us: [email protected]
Views: 484 Clickmyproject
Details of Anomaly Detection in Big Data, Nikunj Oza, 20140728
 
01:06:44
Nikunj Oza, Leader of the Data Sciences Group, NASA Ames Research Center Joint Event with Hadoop Talks Meetup Data-driven methods for anomaly detection identifies as anomalies those data points that do not fit with most of the data in some sense. For example, the anomalies may have greater distances to their nearest neighbors or lower probabilities with respect to an appropriate probability model. However, measuring distances between points or probabilities of points is problematic when working with "big data," with their heterogeneity and volume. In this talk, I will describe the problem in more detail, the heterogeneous data sources available to us, the methods we use to leverage these data sources, and the general data management and data mining problems that we need to solve moving forward. Speaker Bio Nikunj Oza is the leader of the Data Sciences Group at NASA Ames Research Center. He also leads the Discovery of Precursors to Safety Incidents (DPSI) team which applies data mining to aviation safety. Dr. Oza’s 40+ research papers represent his research interests which include data mining, machine learning, anomaly detection, and their applications to Aeronautics and Earth Science. He received the Arch T. Colwell Award for co-authoring one of the five most innovative technical papers selected from 3300+ SAE technical papers in 2005. His DPSI team received the 2010 NASA Aeronautics Research Mission Directorate Associate Administrator’s Award for best technology achievements by a team. He received his B.S. in Mathematics with Computer Science from MIT in 1994, and M.S. (in 1998) and Ph.D. (in 2001) in Computer Science from the University of California at Berkeley. http://www.meetup.com/SF-Bay-ACM/events/183069232/ http://www.sfbayacm.org/event/hadoop-talk-details-anomaly-detection-big-data
Views: 1429 San Francisco Bay ACM
Mean median mode and range ll statistics ll central tendency easy way class 9 cbse
 
05:39
Mean median mode and range statistics Statistics - Mean, Median, Mode how to make paper bag from newspaper https://youtu.be/JoTqwqjdjPs Statistics for Ungrouped Data- How to find Mean Median Mode Finding mean, median, and mode CALCULATE MEAN MEDIAN AND MODE FOR GROUPED DATA Mean; Median; Mode; Standard Deviation Statistics intro: Mean, median, and mode | Data and statistics Central Tendency - Mean Median Mode Range Mean, Median, and Mode - CBSE NCERT Class 9, chapter 14, statistics. class 8, class 7, class 6, class 10. Mode, Mean, and Median - VERY EASY way to learn, Statistics intro: Mean, median, and mode | Data and statistics | 6th grade Introduction to descriptive statistics and central tendency. Ways to measure the average of a set: median, mean, mode. Mean, Median, Mode, and Range Made Easy! Different types of quadrilaterals and their properties class 9 cbse https://www.youtube.com/watch?v=xahcJZu1u9c If you like our videos, subscribe to our channel https://www.youtube.com/channel/UCEVG-1G2sP_CCvRUp3i_fyg Feel free to connect with us at https://www.facebook.com/galaxycoachingclasses/?ref=bookmarks or https://www.facebook.com/galaxymathstricks/ Please Like Our Facebook Page. https://www.facebook.com/galaxycoachingclasses/ Please Follow Me On Instagram https://www.instagram.com/chetanptl12/ Please Follow me on Twitter. https://twitter.com/chetan21385 Have fun, while you learn. Thanks for watching
Views: 715301 galaxy coaching classes
CERIAS - 2015-10-21 - Anonymized Data
 
52:10
Anonymized Data Koray Mancuhan - Purdue University Oct 21, 2015 Abstract Privacy has been a hot issue since early 2000s, in particular with the rise of social network and data outsourcing. Data privacy is a big concern in data outsourcing because it involves sharing personal data with third parties. In this talk, I will give an introduction to data privacy on topics such as privacy standards, data anonymization techniques, and data anonymization usage in data outsourcing and data mining. Then, I will present our work in data mining using anonymized data. We propose a data publisher-third party decision tree learning method for outsourced private data. The privacy model is anatomization/fragmentation: the third party sees data values, but the link between sensitive and identifying information is encrypted with a key known only to data publisher. Data publishers have limited processing and storage capability. Both sensitive and identifying information thus are stored on the third parties. The approach presented also retains most processing at the third parties, and data publisher-side processing is amortized over predictions made by the data publishers. Experiments on various datasets show that the method produces decision trees approaching the accuracy of a non-private decision tree, while substantially reducing the data publisher's computing resource requirements. About the Speaker Koray is a PhD student in the Department of Computer Science at Purdue University. He is currently a member of the privacy preserving data mining lab under the supervision of Chris Clifton. His research elaborates the data mining models from the anonymized data. The challenge in his research is the injected uncertainty into data because of anonymization methods. In most cases, uncertainty slows down the data mining models and require special mechanisms to exploit noisy data. His work includes learning algorithms such as k-NN classification, SVM classification, decision tree classification and frequent itemset mining. Koray received his masters degree in Computer Science from Purdue University and his undergraduate degree in Computer Engineering from Galatasaray University. Throughout his masters degree, he studied on data mining and social fairness, and authored papers in this topic. Before joining to Purdue CS, he did his research in semantic web area. He was a former member of Complex Networks lab in Galatasaray University where he worked in developing a new automatic web service annotation tool. http://www.cerias.purdue.edu
Views: 445 ceriaspurdue